Conditional probability computation

AI Thread Summary
The discussion revolves around calculating the new probabilities of three candidates (A, B, D) after candidate C withdraws from an election. Initially, the probabilities for A, B, C, and D are 0.4, 0.3, 0.2, and 0.1, respectively. The challenge is determining how the removal of C affects the probabilities of the remaining candidates, with uncertainty about whether C's supporters will vote for others or abstain. A solution approach involves treating the candidates' supporters as proportions of voters, leading to adjusted probabilities of 0.5, 0.375, and 0.125 for A, B, and D after accounting for the loss of C's supporters. The discussion highlights the complexity of conditional probability in election scenarios and the importance of understanding voter behavior.
Nero26
Messages
21
Reaction score
1
Hi all,
While solving problems related to probability I got stucked with this problem:
In some election 4 candidates A,B,C,D has the probability of being elected is 0.4,0.3,0.2,0.1 respectively.If the candidate C discard his candidateship just prior to the election ,then what will be the current probability of the remaining three?
I thought a lot but couldn't find any way to relate the probability of C with others.I sensed the probability of others will increase but I'm unable to determine it.By the way,my knowledge is limited to topics like conditional probability,Bayes' Theorem.But I can't categorize the problem in any formula.If the problem is explained please remain in the scope of my knowledge.
Or do I have to learn some new concept to solve this type of problem?
Any help will be appreciated.
Thanks.
 
Physics news on Phys.org
Nero26 said:
Hi all,
While solving problems related to probability I got stucked with this problem:
In some election 4 candidates A,B,C,D has the probability of being elected is 0.4,0.3,0.2,0.1 respectively.If the candidate C discard his candidateship just prior to the election ,then what will be the current probability of the remaining three?
I thought a lot but couldn't find any way to relate the probability of C with others.I sensed the probability of others will increase but I'm unable to determine it.By the way,my knowledge is limited to topics like conditional probability,Bayes' Theorem.But I can't categorize the problem in any formula.If the problem is explained please remain in the scope of my knowledge.
Or do I have to learn some new concept to solve this type of problem?
Any help will be appreciated.
Thanks.

It is not possible to give a good, convincing answer to this question. For example, you don't know whether the supporters of C will stay home and not vote at all, or whether some of them will vote instead for A, B or D, and the proportions who do so.

I suspect that what the questioner wants you to do is look at the problem in a rather naive manner, as though the supporters of A, B, C and D were like four types of objects in a large bin (in the proportions indicated), and then get the new proportions after all the type C objects have been removed from the bin.

RGV
 
Last edited:
Ray Vickson said:
It is not possible to give a good, convincing answer to this question. For example, you don't know whether the supporters of C will stay home and not vote at all, or whether some of them will vote instead for A, B or D, and the proportions who do so.

I suspect that what the questioner wants you to do is look at the problem in a rather naive manner, as though the supporters of A, B, C and D were like four types of objects in a large bin (in the proportions indicated), and then get the new proportions after all the type C objects have been removed from the bin.

RGV
Oh!you're really great.:smile:Thanks a lot.I solved it according to your instructions.Considering there were 100 voters.So when C left,20 voters left or didn't participate in election.So now among 80 voters A,B,D have 40,30,10 supporters respectively.This way their probability gets changed to 40/80,30/80,10/80 which matches the answers.
By the way,actually it is a problem in our book and I referred to its solution manual of my friend :devil:.They solved this simple problem in such a strange way that both the problem and its solution seemed very difficult to understand.Here it is:
"Solution: probability of defeat of C was =1-.2=0.8
As C left,the probability of win of each of the remaining will increase by 1/0.8=1.25 times.(Can you please say how they did it?)
So probabilities of win of A,B,D are 0.4*1.25,0.3*1.25,0.1*1.25 or 0.5,0.375,0.125 respectively."
Because of you people we can :biggrin:
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...

Similar threads

Back
Top