Conditionally independent with a Random Chain.

fortune
Messages
3
Reaction score
0
I found this post somewhere on the net. I am also getting a similar problem. Can you all please help?


+++++++++++++++

I have a problem, I try to solve but still get stuck.
Can you please read my solution and point out what my wrong points are?

Xn is a Markov Chain . n=1...M. with P(X(0)=i)=a_i. and P(X(n+1)=i|X(n)=j)=Pji.
Yn n=1..M are discrete random variables which are conditionally independent
given X with

P(Y(n)=i|X(n)=j)=f(i,j)


I need to find a recursion for alpha_N(i)= P(Y(N),Y(N-1),...,Y(0), and X(N)=i).

where P(.) is the probability of (.)


My solution is that:


alpha_N(i)= P(Y(N),Y(N-1),...,Y(0), and X(N)=i)

=P(Y(N),Y(N-1),...,Y(0)|X(N)=i)P(X(N)=i)
=P(Y(N)|X(N)=1)*P(Y(N-1),..,Y(0)|X(N)=i)P(X(N)=i) (1)


***question*******
Is (1) correct? I am confused because as the provided information
Yn n=1..M are discrete random variables which are conditionally independent
given X. That means P(Y(0),...Y(N)|X)=P(Y(0)|X)*...P(Y(N)|X)
where X is a whole chain, not only one sample X(n).
Does it still guarantee P(Y(0),...Y(N)|X(N))=P(Y(0)|X(N))*...P(Y(N)|X(N))? ?

***end question****


=f(y(n),i)*Sum_k{P(X(N)=i|P(X(N-1)=k)P(X(N-1)=k}*P(Y(N-1),...,Y(0)|X(N)=i)

=f(y(n),i)*Sum_k{P_ki*P(X(N-1)=k}*P(Y(N-1),...,Y(0)|X(N)=i)

I get stuck here. The answer is wrong While the correct answer should be as:

alpha_N(i)=f(y(N),i)*Sum_k{P_ki*P(X(N-1)=k*P(Y(N-1),...,Y(0)|X(N-1)=k)}

=Sum_k {f(Y(N),i)*P_ki*alpha_(N-1)(k); where Sum_k means summary for k=1 to M.

I think the problem that I can not get the correct answer is the step (1).


Can you please help me out?

Thanks
 
Physics news on Phys.org
anyone can help please!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top