How Is Waveguide Conductivity Calculated with Changing Frequencies?

AI Thread Summary
The discussion focuses on calculating the cutoff frequency and relative permittivity of a dielectric-filled conducting waveguide at different frequencies. The user attempts to find the phase velocity using the relationship between wavelength and frequency but encounters difficulties in obtaining the correct cutoff frequency. Clarifications are provided regarding the notation used, specifically that "Lambdag" refers to the guide wavelength. Additionally, hints suggest considering the provided frequency and wavelength pairs to derive necessary parameters. The conversation emphasizes the importance of understanding the distinctions between frequency and angular frequency in waveguide calculations.
unstoppable
Messages
12
Reaction score
0

Homework Statement


At frequency f1=9 GHz, the guide wavelength along a certain dielectric-filled conducting waveguide is found to be Lambda1=3.456 cm, for a particular mode. At frequency f2=10GHz, the wavelength is Lambda2=2.345 cm, for the same mode.

(a) What is the cutoff frequency Fo of that mode?

(b) What is the relative permitttivity epsilon of the dielectric


Homework Equations



Lambdag=Vp/f where Lambdag is the wavelength along the waveguide.

Vp=omega/Beta=c/n*[1-(omegac/omega)^2]^-1/2 where Vp is the phase velocity.





The Attempt at a Solution



I first solved for Vp using Lambdag=Vp/f and then I plugged in the numerical value for Vp=Lambdag*f and then I solved for Omegac which is the cutoff frequency from the above equation Vp=c/n*[1-omegac/omega^2]^-1/2. However, I am not getting the correct answer. Any ideas on what I should do?
 
Physics news on Phys.org
Is this problem for a physics course or an engineering course? If engineering, do you have Paul and Nasar, Introduction to Electromagnetic Fields?

Does the "g" in "Lambdag" denote "guide" or "group"? (It should denote "guide".)

Hint 1a: How do you know n?
Hint 1b: You are given two sets of f and lambda. Why do you suppose that is?
Hint 2: f is not the same thing as omega.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top