Conformal Electromagnetic Relativity (2/2)

In summary, the field equations for Conformal Electromagnetic Relativity are given by (4.1) and (4.2). These equations involve various constants, such as k1, k2, k3, and k4, and include terms related to the curvature and metric of the space. The equations also involve the variation of the Christoffel symbols and the Ricci tensor.
  • #1
CGR_JAMA
6
0
Conformal Electromagnetic Relativity

(...coming from "Conformal Electromagnetic Relativity (1/2)")

4 Field Equations

The corresponding field equations are:

[tex](4.1)\ \ \ \ \delta g^{ij} \left. \right) \ \ \ \ \ \ \ \ \bar{\stackrel{\rightharpoonup}{\tilde{R}}}.(\bar{\stackrel{\rightharpoonup}{\tilde{R}}}_{ij} -{\tfrac{1}{4}} .\bar{\stackrel{\rightharpoonup}{\tilde{R}}}.g_{ij} )=\][/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =k_{1} .(-(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}_{i} ^{k} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}_{i} ^{k} ).(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}_{jk} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}_{jk} )+{\tfrac{1}{4}} .(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{kr} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{kr} ).(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}_{kr} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}_{kr} ).g_{ij} )+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[+k_{2} .(-\partial \hat{\Gamma }_{i} ^{k} .\partial \hat{\Gamma }_{jk} +{\tfrac{1}{4}} .\partial \hat{\Gamma }^{kr} .\partial \hat{\Gamma }_{kr} .g_{ij} )+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[+{\tfrac{1}{2}} .k_{3} .(-(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}_{i} ^{k} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}_{i} ^{k} ).\partial \hat{\Gamma }_{jk} -(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}_{j} ^{k} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}_{j} ^{k} ).\partial \hat{\Gamma }_{ik} +{\tfrac{1}{2}} .(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{kr} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{kr} ).\partial \hat{\Gamma }_{kr} .g_{ij} )+[/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +{\tfrac{1}{2}} .k_{4} .\left(-3.(\tilde{R}_{pi} ^{\ln } +\tilde{R}_{p} ^{n} _{i} ^{l} +\tilde{R}_{p} ^{\ln } _{i} ).(\tilde{R}^{p} _{j\ln } +\tilde{R}^{p} _{njl} +\tilde{R}^{p} _{\ln j} )+\right. \] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[+(\tilde{R}_{i} ^{r\ln } +\tilde{R}_{i} ^{nrl} +\tilde{R}_{i} ^{\ln r} ).(\tilde{R}_{jr\ln } +\tilde{R}_{jnrl} +\tilde{R}_{j\ln r} )+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[\left. +{\tfrac{1}{2}} .(\tilde{R}_{p} ^{r\ln } +\tilde{R}_{p} ^{nrl} +\tilde{R}_{p} ^{\ln r} ).(\tilde{R}^{p} _{r\ln } +\tilde{R}^{p} _{nrl} +\tilde{R}^{p} _{\ln r} ).g_{ij} \right)+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[-({\tfrac{1}{2}} .k_{1} +{\tfrac{3}{8}} .k_{3} +3.k_{4} ).\left(-(\tilde{R}^{m} _{i} ^{l} _{o} +\tilde{R}^{m} _{oi} ^{l} +\tilde{R}^{ml} _{oi} ).(\tilde{R}^{o} _{jlm} +\tilde{R}^{o} _{mjl} +\tilde{R}^{o} _{lmj} )+\right. \] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[\left. +{\tfrac{1}{4}} .(\tilde{R}^{mrl} _{o} +\tilde{R}^{m} _{o} ^{rl} +\tilde{R}^{ml} _{o} ^{r} ).(\tilde{R}^{o} _{rlm} +\tilde{R}^{o} _{mrl} +\tilde{R}^{o} _{lmr} ).g_{ij} \right)\] [/tex]


[tex](4.2)\ \ \ \ \delta \tilde{\Gamma }^{i} _{jk} \left. \right)\ \ \ \ \ \ \ \ \tilde{\Pi }_{i} (\bar{\stackrel{\rightharpoonup}{\tilde{R}}}.g^{jk} )-\delta _{i}^{k} .\tilde{\Pi }_{r} (\bar{\stackrel{\rightharpoonup}{\tilde{R}}}.g^{jr} )+2.\hat{\Gamma }^{k} _{ir} .(\bar{\stackrel{\rightharpoonup}{\tilde{R}}}.g^{jr} )= [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[=-k_{1} .(\tilde{\Pi }_{i} (\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{jk} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{jk} )-\delta _{i}^{k} .\tilde{\Pi }_{r} (\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{jr} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{jr} )+2.\hat{\Gamma }^{k} _{ir} .(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{jr} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{jr} ))+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[-k_{2} .(\delta _{i}^{k} .(\tilde{\Pi }_{p} \partial \hat{\Gamma }^{pj} +\hat{\Gamma }^{j} _{pr} .\partial \hat{\Gamma }^{pr} )-\delta _{i}^{j} .(\tilde{\Pi }_{p} \partial \hat{\Gamma }^{pk} +\hat{\Gamma }^{k} _{pr} .\partial \hat{\Gamma }^{pr} ))+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[+k_{1} .\delta _{i}^{j} .(\tilde{\Pi }_{p} (\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{pk} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{pk} )+\hat{\Gamma }^{k} _{rp} .(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{rp} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{rp} ))+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[-{\tfrac{1}{2}} .k_{3} .(\tilde{\Pi }_{i} \partial \hat{\Gamma }^{jk} -\delta _{i}^{k} .\tilde{\Pi }_{p} \partial \hat{\Gamma }^{jp} +2.\hat{\Gamma }^{k} _{ip} .\partial \hat{\Gamma }^{jp} )+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[-{\tfrac{1}{2}} .k_{3} .\delta _{i}^{k} .(\tilde{\Pi }_{p} (\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{pj} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{pj} )+\hat{\Gamma }^{j} _{pr} .(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{pr} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{pr} ))+[/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +{\tfrac{1}{2}} .k_{3} .\delta _{i}^{j} .(\tilde{\Pi }_{p} (\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{pk} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{pk} )+\hat{\Gamma }^{k} _{pr} .(\hat{\stackrel{\rightharpoonup}{\tilde{R}}}^{pr} -{\tfrac{1}{2}} .\stackrel{\leftharpoonup}{\tilde{R}}^{pr} ))+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[+{\tfrac{1}{2}} .k_{3} .\delta _{i}^{j} .(\tilde{\Pi }_{p} \partial \hat{\Gamma }^{pk} +\hat{\Gamma }^{k} _{rp} .\partial \hat{\Gamma }^{rp} )+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[+2.({\tfrac{1}{2}} .k_{1} +{\tfrac{3}{8}} .k_{3} +3.k_{4} ).(\tilde{\Pi }_{p} (\tilde{R}^{kjp} _{i} +\tilde{R}^{k} _{i} ^{jp} +\tilde{R}^{kp} _{i} ^{j} )+\hat{\Gamma }^{k} _{rp} .(\tilde{R}^{pjr} _{i} +\tilde{R}^{p} _{i} ^{jr} +\tilde{R}^{pr} _{i} ^{j} )+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[+\tilde{\Pi }_{p} (\tilde{R}^{jpk} _{i} +\tilde{R}^{j} _{i} ^{pk} +\tilde{R}^{jk} _{i} ^{p} )+\hat{\Gamma }^{k} _{rp} .(\tilde{R}^{jrp} _{i} +\tilde{R}^{j} _{i} ^{rp} +\tilde{R}^{jp} _{i} ^{r} )+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[+\tilde{\Pi }_{p} (\tilde{R}^{pkj} _{i} +\tilde{R}^{p} _{i} ^{kj} +\tilde{R}^{pj} _{i} ^{k} )+\hat{\Gamma }^{k} _{rp} .(\tilde{R}^{rpj} _{i} +\tilde{R}^{r} _{i} ^{pj} +\tilde{R}^{rj} _{i} ^{p} ))+\] [/tex]

[tex].\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[-6.k_{4} .(\tilde{\Pi }_{p} (\tilde{R}_{i} ^{jpk} +\tilde{R}_{i} ^{kjp} +\tilde{R}_{i} ^{pkj} )+\hat{\Gamma }^{k} _{rp} .(\tilde{R}_{i} ^{jrp} +\tilde{R}_{i} ^{pjr} +\tilde{R}_{i} ^{rpj} ))\] [/tex]


5 GR-Compatible Field Equations

Consider the following connection and conformal gauge:

[tex](5.1)\ \ \ \ \tilde{\Gamma }^{i} _{jk} \equiv \Gamma ^{i} _{jk} +\Theta ^{i} _{jk} +c_{1} .\delta _{j}^{i} .A_{k} [/tex]

[tex](5.2)\ \ \ \ / \ \ \ \ \Theta ^{i} _{jk} \equiv \Theta ^{i} _{kj} \ \ \ \ \ \ \ \ ,\ \ \ \ \ \ \ \ \Theta _{i} ^{k} _{j} +\Theta ^{k} _{ij} -\delta _{i}^{k} .(\Theta _{j} ^{r} _{r} +\Theta ^{r} _{jr} ) \equiv 0[/tex]

[tex](5.3)\ \ \ \ \bar{\stackrel{\rightharpoonup}{\tilde{R}}}\equiv 4.\lambda _{c}\ \ \ \ \ \ \ \ (metric\ \ conformal\ \ gauge) [/tex]

The field equations then reduces to:

[tex](5.4)\ \ \ \ R_{ij} -{\tfrac{1}{2}} .R.g_{ij} ={\tfrac{8.\pi .k_{g} }{c^{4} }} .T_{ij} -\lambda _{c} .g_{ij} +{\tfrac{8.\pi .k_{g} }{c^{4} }} .\left({\tfrac{1}{4.\pi }} .(-F_{i} ^{k} .F_{jk} +{\tfrac{1}{4}} .F^{kr} .F_{kr} .g_{ij} )\right) [/tex]

[tex](5.5)\ \ \ \ T_{ij} \equiv {\tfrac{c^{4} }{8.\pi .k_{g} }} .\left(\bar{\stackrel{\rightharpoonup}{\Theta }}_{ij} -{\tfrac{1}{2}} .g^{kr} .\bar{\stackrel{\rightharpoonup}{\Theta }}_{kr} .g_{ij} \right) [/tex]

[tex](5.6)\ \ \ \ / \ \ \ \ \bar{\stackrel{\rightharpoonup}{\Theta }}_{ij} \equiv -\nabla _{k} \Theta ^{k} _{ij} +\Theta ^{k} _{ir} .\Theta ^{r} _{jk} +{\tfrac{1}{2}} .(\nabla _{i} \Theta ^{k} _{jk} +\nabla _{j} \Theta ^{k} _{ik} )-\Theta ^{r} _{ij} .\Theta ^{k} _{rk}[/tex]

[tex](5.7)\ \ \ \ \nabla _{i} g^{jk} =0[/tex]

[tex](5.8)\ \ \ \ \nabla _{k} F^{jk} =0[/tex]

[tex](5.9)\ \ \ \ / \ \ \ \ F_{ij} \equiv \partial _{i} A_{j} -\partial _{j} A_{i} \ \ \ \ \ \ \ \ \to \ \ \ \ \ \ \ \ \nabla _{k} F_{ij} +\nabla _{j} F_{ki} +\nabla _{i} F_{jk} =0 [/tex]


6 References

[1] "The meaning of Relativity" Albert Einstein
Princeton University Press ISBN 84-239-6460-4

[2] "Gravitation" Charles W. Misner, Kip S. Thorne and John A. Wheeler
W.H. Freemand and Company ISBN 0-7167-0344-0

[3] "On the History of Unified Field Theories" Hubert F. M. Goenner
Max Planck Institute for Gravitational Physics
Albert Einstein Institute, Germany
 

1. What is Conformal Electromagnetic Relativity?

Conformal Electromagnetic Relativity is a theory that proposes a unified description of both electromagnetism and general relativity. It suggests that the laws of electromagnetism and gravity can be described by a single set of equations, known as the conformal equations.

2. How does Conformal Electromagnetic Relativity differ from other theories of electromagnetism and gravity?

Unlike other theories, Conformal Electromagnetic Relativity takes into account the conformal symmetry of spacetime, which is the idea that the laws of physics should remain unchanged under certain transformations. This allows for a more elegant and unified description of electromagnetism and gravity.

3. What are some potential applications of Conformal Electromagnetic Relativity?

Some potential applications of Conformal Electromagnetic Relativity include understanding the behavior of black holes, the dynamics of the early Universe, and the behavior of electromagnetic waves in curved spacetime. It may also have implications for the development of new technologies.

4. How does Conformal Electromagnetic Relativity relate to Einstein's theory of general relativity?

Conformal Electromagnetic Relativity builds upon Einstein's theory of general relativity by incorporating the principles of conformal symmetry. It is an extension of general relativity that aims to unify electromagnetism and gravity.

5. What evidence supports the validity of Conformal Electromagnetic Relativity?

Currently, there is no direct evidence for Conformal Electromagnetic Relativity. However, the theory is supported by mathematical consistency and its ability to provide a unified description of electromagnetism and gravity. Further research and experiments may help to provide evidence for its validity.

Similar threads

  • Electromagnetism
Replies
1
Views
5K
  • Electromagnetism
Replies
1
Views
768
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
5
Views
2K
Replies
5
Views
696
Replies
1
Views
758
  • Advanced Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
1
Views
920
  • High Energy, Nuclear, Particle Physics
Replies
4
Views
1K
Replies
27
Views
2K
Back
Top