pkwei99
- 1
- 0
Hi,
I'm very ashamed to not understand how even the simplest gluon amplitudes are conformally invariant. See eg http://arxiv.org/abs/hep-th/0312171 pages 11-12.
<br /> M(1^-,2^-,3^+)=\delta(\sum_i \lambda_i\tilde{\lambda}_i)\frac{\langle12\rangle^4}{\langle12\rangle \langle 23\rangle\langle31\rangle}<br />
the dilation operator is:
<br /> D\sim \lambda\frac{\partial}{\partial \lambda}+\tilde{\lambda}\frac{\partial}{\partial \tilde{\lambda}}+2<br />
First, I assume the dilation operator contains a sum over all particles. Next, Witten says the delta function carries weight -4 under D. Ok. Then he says that \langle 12\rangle^4 has weight 4. This I don't get. Doesn't it have weight 4 under just eg \lambda_1\frac{\partial}{\partial \lambda_1}
So
D \langle12\rangle^4=\sum_i (\lambda\frac{\partial}{\partial \lambda}+\tilde{\lambda}\frac{\partial}{\partial \tilde{\lambda}}+2)\langle12\rangle^4=[(4+0+2)+(4+0+2)+(0+0+2) ] \langle12\rangle^4?=14\langle12\rangle^4
Thanks for any help:)
I'm very ashamed to not understand how even the simplest gluon amplitudes are conformally invariant. See eg http://arxiv.org/abs/hep-th/0312171 pages 11-12.
<br /> M(1^-,2^-,3^+)=\delta(\sum_i \lambda_i\tilde{\lambda}_i)\frac{\langle12\rangle^4}{\langle12\rangle \langle 23\rangle\langle31\rangle}<br />
the dilation operator is:
<br /> D\sim \lambda\frac{\partial}{\partial \lambda}+\tilde{\lambda}\frac{\partial}{\partial \tilde{\lambda}}+2<br />
First, I assume the dilation operator contains a sum over all particles. Next, Witten says the delta function carries weight -4 under D. Ok. Then he says that \langle 12\rangle^4 has weight 4. This I don't get. Doesn't it have weight 4 under just eg \lambda_1\frac{\partial}{\partial \lambda_1}
So
D \langle12\rangle^4=\sum_i (\lambda\frac{\partial}{\partial \lambda}+\tilde{\lambda}\frac{\partial}{\partial \tilde{\lambda}}+2)\langle12\rangle^4=[(4+0+2)+(4+0+2)+(0+0+2) ] \langle12\rangle^4?=14\langle12\rangle^4
Thanks for any help:)