I Conformal transformation of the line element

physicality
Messages
7
Reaction score
0
Let us see how the line element transforms under conformal transformations. Consider the Minkovski metric gij, a line element ds2=dxigijdxj, and a conformal transformation

δk(x)=ak + λ xk + Λklxl + x2sk - 2xkx⋅s

We have δ(dxk)=dδ(x)k=λ dxk + Λkldxl + 2 x⋅dx sk - 2dxkx⋅s - 2xkdx⋅s

And so the line element transforms by δds2=δ(dxi)gijδ(dxj)=
(λ dxi + Λildxl + 2 x⋅dx si - 2dxix⋅s - 2xidx⋅s) gij (λ dxj + Λjrdxr + 2 x⋅dx sj - 2dxjx⋅s - 2xjdx⋅s)

How can we see that δds2=(2λ-2x⋅s)ds2
 
Physics news on Phys.org
The variation symbol \delta is a derivation. So, you should consider

\delta \left(ds^{2}\right) = \eta_{\mu\nu} \ \delta \left(dx^{\mu}\right) \ dx^{\nu} + \eta_{\mu\nu} \ dx^{\mu} \ \delta \left(dx^{\nu}\right) . \ \ \ (1)

Now, for the infinitesimal conformal transformation

\delta x^{\mu} = a^{\mu} + \lambda x^{\mu} + \omega^{\mu}{}_{\nu}x^{\nu} + c^{\mu}x^{2} - 2 (c \cdot x ) x^{\mu} ,

if we take the partial derivative with respect to x^{\sigma}, we get

\partial_{\sigma} (\delta x^{\mu}) = \delta^{\mu}_{\sigma} \left( \lambda - 2 c \cdot x \right) + \eta_{\sigma \tau} \left( \omega^{\mu \tau} + 2 ( c^{\mu}x^{\tau} - c^{\tau}x^{\mu}) \right) . \ \ (2)

In terms of the following local parameters

\Lambda (x) = \lambda - 2 c \cdot x , \Omega^{\mu \tau}(x) = - \Omega^{\tau \mu}(x) = \omega^{\mu \tau} + 2 (c^{\mu}x^{\tau} - c^{\tau}x^{\mu}) , equation (2) becomes

\partial_{\sigma} (\delta x^{\mu}) = \delta^{\mu}_{\sigma} \ \Lambda (x) + \eta_{\sigma \tau} \ \Omega^{\mu \tau}(x) .

From this, you get

d (\delta x^{\mu}) = \Lambda (x) \ dx^{\mu} + \eta_{\sigma \tau} \ \Omega^{\mu \tau} \ dx^{\sigma} . \ \ \ \ \ (3)

Substituting (3) in (1), we find

\delta \left(ds^{2}\right) = 2 \Lambda (x) \ \eta_{\mu\nu} \ dx^{\mu} dx^{\nu} + \Omega_{\mu \nu}(x) \ dx^{\mu} dx^{\nu} + \Omega_{\nu \mu} (x) \ dx^{\mu}dx^{\nu} .

The last two terms vanish because \Omega_{\mu\nu} = - \Omega_{\nu\mu}. So you are left with

\delta \left(ds^{2}\right) = 2 \Lambda (x) \ ds^{2} .
 
  • Like
Likes vanhees71
Right, variations satisfy the Leibnitz rule. Thank you very much, sir.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top