MHB Confused by this probability question

das1
Messages
40
Reaction score
0
I came across this problem and I'm wondering if anyone can tell me what it means/how to do it:
"Given the formula below to model, what is the expected value of rolling two dice simultaneously?
$$E(X)= \sum_{i=1}^{\infty}x_i f(x_i)."$$

I've never seen this notation before; how does it work?
 
Mathematics news on Phys.org
das said:
I came across this problem and I'm wondering if anyone can tell me what it means/how to do it:
"Given the formula below to model, what is the expected value of rolling two dice simultaneously?
E[X] = *the sum from 1 to infinity* of xi f (xi)"

I've never seen this notation before; how does it work?

You are dealing with a discrete random variable (the total sum on two dice is an integer) so the expectation won't be an integral, it will be a sum. Let $X$ be the sum of the two dice. $f_{X}(x)$ is a common notation for the density fuction. For discrete Random variables, as in this case we have $f_{X}(x)=P(X=x)$. $X$ can take values 1 to 12. The expectation is $1P(X=1)+2P(X=2)+..+12P(X=12)$
 
Fermat, you're a legend, thank you.
One thing, shouldn't it be 2 to 12 because that's the lowest you can get when rolling 2 dice simultaneously?
 
das said:
Fermat, you're a legend, thank you.
One thing, shouldn't it be 2 to 12 because that's the lowest you can get when rolling 2 dice simultaneously?

Good question! Normally you write all non-zero terms in the sum but you can actually use this formula for all discrete numbers. Why? Let's look at when the sum equals $-2$ for example. This part of the expected value sum would be $-2 \cdot P[X=-2]$. The probability the sum equals a negative number though is obviously 0, so this term becomes $-2 \cdot 0=0$. All other terms outside of the range of possible sums will also drop to zero, thus we usually only include the non-zero terms when writing out the work.

So yes, it would make more sense maybe to write $2P(X=2)+3P[X=3]..+12P(X=12)$ but $1P(X=1)+2P(X=2)+..+12P(X=12)$ isn't incorrect because $1P[X=1]=0$ :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top