Dustinsfl
- 2,217
- 5
Make matrix defective if possible and identify the values of alpha.
\begin{bmatrix}<br /> 3\alpha & 1 & 0\\ <br /> 0 & \alpha & 0\\ <br /> 0 & 0 & \alpha<br /> \end{bmatrix}
Skipping the boring stuff we obtain (\alpha-\lambda)^2(3\alpha-\lambda)=0 as the characteristic polynomial.
\lambda_1=\lambda_2=\alpha and \lambda_3=3\alpha
For lambda being alpha
\begin{bmatrix}<br /> 2\alpha & 1 & 0\\ <br /> 0 & 0 & 0\\ <br /> 0 & 0 & 0<br /> \end{bmatrix}\Rightarrow \begin{bmatrix}<br /> 1 & \frac{-1}{2\alpha} & 0\\ <br /> 0 & 0 & 0\\ <br /> 0 & 0 & 0<br /> \end{bmatrix}\Rightarrow x_2\begin{bmatrix}<br /> \frac{-1}{2\alpha}\\ <br /> 1\\ <br /> 0 <br /> \end{bmatrix}+x_3\begin{bmatrix}<br /> 0\\ <br /> 0\\ <br /> 1<br /> \end{bmatrix}
For this lambda value, the matrix can't be defective? Not sure though.
For lambda being 3alpha
\begin{bmatrix}<br /> 0 & 1 & 0\\ <br /> 0 & -2\alpha & 0\\ <br /> 0 & 0 & -2\alpha<br /> \end{bmatrix}\Rightarrow \begin{bmatrix}<br /> 0 & 1 & 0\\ <br /> 0 & 0 & 1\\ <br /> 0 & 0 & 0<br /> \end{bmatrix}\Rightarrow x_1\begin{bmatrix}<br /> 1\\ <br /> 0\\ <br /> 0<br /> \end{bmatrix}
And for this one, alpha can be any value and the matrix will be defective.
\begin{bmatrix}<br /> 3\alpha & 1 & 0\\ <br /> 0 & \alpha & 0\\ <br /> 0 & 0 & \alpha<br /> \end{bmatrix}
Skipping the boring stuff we obtain (\alpha-\lambda)^2(3\alpha-\lambda)=0 as the characteristic polynomial.
\lambda_1=\lambda_2=\alpha and \lambda_3=3\alpha
For lambda being alpha
\begin{bmatrix}<br /> 2\alpha & 1 & 0\\ <br /> 0 & 0 & 0\\ <br /> 0 & 0 & 0<br /> \end{bmatrix}\Rightarrow \begin{bmatrix}<br /> 1 & \frac{-1}{2\alpha} & 0\\ <br /> 0 & 0 & 0\\ <br /> 0 & 0 & 0<br /> \end{bmatrix}\Rightarrow x_2\begin{bmatrix}<br /> \frac{-1}{2\alpha}\\ <br /> 1\\ <br /> 0 <br /> \end{bmatrix}+x_3\begin{bmatrix}<br /> 0\\ <br /> 0\\ <br /> 1<br /> \end{bmatrix}
For this lambda value, the matrix can't be defective? Not sure though.
For lambda being 3alpha
\begin{bmatrix}<br /> 0 & 1 & 0\\ <br /> 0 & -2\alpha & 0\\ <br /> 0 & 0 & -2\alpha<br /> \end{bmatrix}\Rightarrow \begin{bmatrix}<br /> 0 & 1 & 0\\ <br /> 0 & 0 & 1\\ <br /> 0 & 0 & 0<br /> \end{bmatrix}\Rightarrow x_1\begin{bmatrix}<br /> 1\\ <br /> 0\\ <br /> 0<br /> \end{bmatrix}
And for this one, alpha can be any value and the matrix will be defective.
Last edited: