1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Confused on this defective matrix problem

  1. Apr 24, 2010 #1
    Make matrix defective if possible and identify the values of alpha.

    [tex]\begin{bmatrix}
    3\alpha & 1 & 0\\
    0 & \alpha & 0\\
    0 & 0 & \alpha
    \end{bmatrix}[/tex]

    Skipping the boring stuff we obtain [itex](\alpha-\lambda)^2(3\alpha-\lambda)=0[/itex] as the characteristic polynomial.

    [tex]\lambda_1=\lambda_2=\alpha[/tex] and [tex]\lambda_3=3\alpha[/tex]
    For lambda being alpha
    [tex]\begin{bmatrix}
    2\alpha & 1 & 0\\
    0 & 0 & 0\\
    0 & 0 & 0
    \end{bmatrix}\Rightarrow \begin{bmatrix}
    1 & \frac{-1}{2\alpha} & 0\\
    0 & 0 & 0\\
    0 & 0 & 0
    \end{bmatrix}\Rightarrow x_2\begin{bmatrix}
    \frac{-1}{2\alpha}\\
    1\\
    0
    \end{bmatrix}+x_3\begin{bmatrix}
    0\\
    0\\
    1
    \end{bmatrix}[/tex]

    For this lambda value, the matrix can't be defective? Not sure though.

    For lambda being 3alpha
    [tex]\begin{bmatrix}
    0 & 1 & 0\\
    0 & -2\alpha & 0\\
    0 & 0 & -2\alpha
    \end{bmatrix}\Rightarrow \begin{bmatrix}
    0 & 1 & 0\\
    0 & 0 & 1\\
    0 & 0 & 0
    \end{bmatrix}\Rightarrow x_1\begin{bmatrix}
    1\\
    0\\
    0
    \end{bmatrix}[/tex]

    And for this one, alpha can be any value and the matrix will be defective.
     
    Last edited: Apr 25, 2010
  2. jcsd
  3. Apr 25, 2010 #2

    gabbagabbahey

    User Avatar
    Homework Helper
    Gold Member

    A 3x3 matrix is defective it has fewer that 3 distinct, linearly independent eigenvectors. How many distinct, linearly independent eigenvectors does this matrix have?
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook