Confusing integral in Zee's QFT

waht
Messages
1,499
Reaction score
4
This is probably really simple. In chapter I.4 the jump from (4) -> (5) is sort of eluding

W(J) = - \iint dx^0 dy^0 \int \frac{dk^0}{2\pi} e^{i k^0(x - y)^0} \int \frac{d^3k}{(2 \pi)^3} \frac{e^{i \vec{k}(\vec{x_1} - \vec{x_2})}} {k^2 - m^2 + i\epsilon}

and

\omega^2 = \vec{k}^2 + m^2


He got

W(J) = \int dx^0 \int \frac{d^3k}{(2\pi)^3} \frac{e^{i \vec{k} (\vec{x_1} - \vec{x_2})}}{\vec{k}^2 + m^2}


the way I see it - the middle term is the delta function

W(J) = - \iint dx^0 dy^0 \delta(x^0 - y^0) \int \frac{d^3k}{(2 \pi)^3} \frac{e^{i \vec{k}(\vec{x_1} - \vec{x_2})}} {k^2 - m^2 + i\epsilon}

but how does it disappear, and how does

k^2 - m^2 + i\epsilon turn into

\vec{k}^2 + m^2

k^0 would be the \omega

but somehow this doesn't add up.

so just wondering if anyone could give a pointer on how to solve this
 
Physics news on Phys.org
<br /> W(J) = - \iint dx^0 dy^0 \int \frac{dk^0}{2\pi} e^{i k^0(x - y)^0} \int \frac{d^3k}{(2 \pi)^3} \frac{e^{i \vec{k}(\vec{x_1} - \vec{x_2})}} {k^2 - m^2 + i\epsilon} <br />

To do this integral, he integrated over y0 first. That produces a delta function \delta(k_0). Then he integrated over k0, and because of the delta function, this just sets k0 equal to zero everywhere.

k^2-m^2 if written out is k0^2-k^2-m^2, so if k0 is zero, then that writes out to -(k^2+m^2), which cancels the negative sign.
 
Took a while to convince myself, but yes it makes sense. Thanks.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top