Simplifying Algebraic Expressions: An Example with Step-by-Step Guide

  • Thread starter Thread starter ProPatto16
  • Start date Start date
  • Tags Tags
    Confusing
ProPatto16
Messages
323
Reaction score
0
in an example I've got in a textbook it shows this

<2t,2t2,1>
sqrt(4t2+4t4+1)

becomes

<2t,2t2,1>
2t2+1


how?
 
Physics news on Phys.org
they factored the bottom part and then took the square root .
 
\sqrt{a^2}= |a|
and 2t^2+ 1 is never negative.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top