Chemistry Confusion in relation of Gibbs free energy and equilibrium constant

AI Thread Summary
The discussion centers on calculating the equilibrium constant (Kp) for the reaction SO2(g) + 1/2O2(g) ⇌ SO3(g) at 298 Kelvin, using Gibbs free energy (ΔG) and thermodynamic equations. ΔG is calculated as -70.01 kJ/mol, leading to Keq = e^28.25, which equals 1.86 x 10^12. The confusion arises regarding whether Keq corresponds to Kp or Kc, as both can apply depending on the measurement context, with Kp relating to partial pressures and Kc to concentrations. The standard state for gases is defined as 1 bar, indicating that in this case, Keq is Kp, as the reaction involves gases. Understanding the relationship between Kp and Kc is crucial for accurate calculations in thermodynamics.
tbn032
Messages
34
Reaction score
7
Homework Statement
for the reaction
SO2(g)+(1/2)O2(g)⇌SO3(g);ΔH=-98.32KJ/mole,ΔS=-95J/(mole-K).
find Kp at 298 Kelvin?
Relevant Equations
SO2(g)+(1/2)O2(g)⇌SO3(g);ΔH=-98.32KJ/mole,ΔS=-95J/(mole-K).
SO2(g)+1/2O2(g)SO3(g);ΔHo=-98.32KJ/mole,ΔSo=-95J/(mole-K).
find Kp at 298 Kelvin?
In given question at first Δ G will be calculated using formula ΔG = Δ H – T x ΔS, by putting the given values in formula we get ΔG = -70.01 kJ/mol.
Then Keq will be calculated using equation = Δ G = -RT ln Keq ,ln Keq = -70010J/-8.314 x 298 = 28.25 .or Keq = e28.25 = 1.86x1012.
Now my confusion is Keq=Kpor Keq=Kc(depending on if we measure the equilibrium constant in terms of pressure or molarity, gases can be measured in both).and
Kp = Kc(RT)Δn and Δn=-1/2(for this reaction).
No information about the pressure or concentration is given so how do I conclude that Keq=Kp or Keq=Kc and thus calculate the correct value of Kp
 
Last edited:
Physics news on Phys.org
Given the temperature 298 Kelvin, is this reaction at the 'standard state'? If so, the pressure is ambient or ~1 atm (100 kPa, or 1 bar).
https://en.wikipedia.org/wiki/Standard_state#Conventional_standard_states

Given the standard state, one should be able to determine the density of the gases. What does one's textbook indicate about STP, standard state and Gibbs free energy?

The problem statement one provides indicates gases.
 
Last edited:
my confusion is arising from the fact that in my book it is written that
Δ G = -RT ln Keq
Keq=KporKc as the standard state is referred in terms of partial pressure or concentration
Δ G = -RT ln Kp
Δ G = -RT ln Kk
if calculate the value of Keq from the equation Δ G = -RT ln Keq using R=8.3144598J⋅K-1⋅mol-1.the value of Keq is dimensionless
so I am not able to conclude if Keq=Kp or Keq=Kc
kp≠kc because Kp = Kc(RT)Δn and Δn=-1/2(for this reaction).
20221030_174752.jpg
 
Last edited:
The standard state for gases is 1 bar. So, in this example, the Keq is Kp. It is in terms of the partial pressures of the components in bars.

Incidentally, you omitted the superscript 0 in ##\Delta G^0##
 
  • Like
Likes Lord Jestocost
tbn032 said:
Homework Statement:: for the reaction
SO2(g)+(1/2)O2(g)⇌SO3(g);ΔH=-98.32KJ/mole,ΔS=-95J/(mole-K).
find Kp at 298 Kelvin?
Relevant Equations:: SO2(g)+(1/2)O2(g)⇌SO3(g);ΔH=-98.32KJ/mole,ΔS=-95J/(mole-K).

SO2(g)+1/2O2(g)SO3(g);ΔHo=-98.32KJ/mole,ΔSo=-95J/(mole-K).
find Kp at 298 Kelvin?
In given question at first Δ G will be calculated using formula ΔG = Δ H – T x ΔS, by putting the given values in formula we get ΔG = -70.01 kJ/mol.
Then Keq will be calculated using equation = Δ G = -RT ln Keq ,ln Keq = -70010J/-8.314 x 298 = 28.25 .or Keq = e28.25 = 1.86x1012.
Now my confusion is Keq=Kpor Keq=Kc(depending on if we measure the equilibrium constant in terms of pressure or molarity, gases can be measured in both).and
Kp = Kc(RT)Δn and Δn=-1/2(for this reaction).
No information about the pressure or concentration is given so how do I conclude that Keq=Kp or Keq=Kc and thus calculate the correct value of Kp
The equation is giving it up as you have SO2(g) you are dealing with gases
 
Thread 'Confusion regarding a chemical kinetics problem'
TL;DR Summary: cannot find out error in solution proposed. [![question with rate laws][1]][1] Now the rate law for the reaction (i.e reaction rate) can be written as: $$ R= k[N_2O_5] $$ my main question is, WHAT is this reaction equal to? what I mean here is, whether $$k[N_2O_5]= -d[N_2O_5]/dt$$ or is it $$k[N_2O_5]= -1/2 \frac{d}{dt} [N_2O_5] $$ ? The latter seems to be more apt, as the reaction rate must be -1/2 (disappearance rate of N2O5), which adheres to the stoichiometry of the...
Back
Top