Connection between A(N-1) and SU(N)

  • Thread starter Thread starter gouranja
  • Start date Start date
  • Tags Tags
    Connection
gouranja
Messages
11
Reaction score
0
According to this book I'm reading these groups are said to be equivalent and I am trying to better understand how this is so.

The generators of SU(N) are N^2-1 traceless complex anti-hermitian matrices. The group is over the real numbers and is N^2-1 dimensional.

On the other hand we have the group A(N-1), a subgroup of GL(N,C). The generators of A(N-1) are N^2-1 traceless real matrices but this over the complex numbers. If your require that the generating element be anti-hermitian this reduces the number of complex parameters from N^2-1 to (N^2-1)/2. I.e. we have N^2-1 real parameters and hence the groups are identical.

Is this the correct way to view this?
 
Physics news on Phys.org
Well I can see no response then I shall rephrase the question.
Is it true, and if so why is it true, that the groups A(N-1) and SU(N) have the same root system? i.e. Isomorphic algebras? What is the appropriate group morphism? etc.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top