Conservation of Angular Momentum Question

AI Thread Summary
The discussion centers on a physics problem involving the conservation of angular momentum after a ball collides with a vertically hanging bar. The initial calculations for angular speed yielded incorrect results due to misunderstanding the direction of the ball's velocity post-collision. Correcting the moment of inertia from 1/12 to 1/3 for the hanging bar and considering the pivot point's effects clarified the solution. The conversation emphasizes that while angular momentum is conserved in this system, linear momentum is not due to the forces at the pivot. Understanding vector direction and the system's constraints is crucial for solving similar problems accurately.
PsychonautQQ
Messages
781
Reaction score
10

Homework Statement


A 2 meter long bar weighing 90N hangs vertically from a frictionless pivot. The ball is hit at a point 1.5 Meters below the ceiling by a ball that weighs 3Kg and is traveling with a velocity of 10 m/s. The ball bounces back with a velocity of -6 m/s. Find the angular speed of the bar just after the collision.


Homework Equations


L = Iw = mv x r


The Attempt at a Solution


I ended up finding the answer but I don't understand one step.
At first I set up

(3kg)*(10m/s)(1.5m) = (3kg)*(-6m/s)(1.5m) + (1/12)(9.18kg)((2^2)m)w
Solving for w gives 23.5 rad/s, the WRONG answer.

When I act like the ball's velocity ISN"T in the opposite direction as it was initially, I get the right answer, wtf!?

(3kg)*(10m/s)(1.5m) = (3kg)*(6m/s)(1.5m) + (1/12)(9.18kg)((2^2)m)w
w = 5.88m/s

Is there some weird angular momentum absolute value stuff going on here? I don't get it... Part B asks "Why is the systems angular momentum conserved but the linear momentum is not," I hope it has something to do with the observation I just noticed.
 
Physics news on Phys.org
PsychonautQQ said:
(3kg)*(10m/s)(1.5m) = (3kg)*(-6m/s)(1.5m) + (1/12)(9.18kg)((2^2)m)w
The rod in the problem is hanging by its end, not its center so factor of 1/12 is wrong here, 1/3 should be used. Because the moment of inertia in both cases are different and tend to give different answers. Moreover, mass of rod should be 90/9.81. solve again and you would arrive at the correct answer.

and as far as linear momentum is concerned, since the rod is pivoted it experiences force at the pivot point linear momentum conservation goes out the window!:wink:

Edit: and frictionless pivot just means that rotation is smooth, so angular momentum is conserved.
And the second method isn't correct for the given condition, for the reason you already know.
 
  • Like
Likes 1 person
(With the help of NihalSh on the correction of the equations)

When calculating angular momentum, it may be easier for you to put the ball on one side, and the bar on the other.

(3kg)(10m/s)(1.5m) + (3kg)(-6m/s)(1.5m) = (1/3)(90/9.81kg)((2^2)m)w

You can then take the negative out,

(3kg)(10m/s)(1.5m) - (3kg)(6m/s)(1.5m) = (1/3)(90/9.81kg)((2^2)m)w

now adding to the other side, we get your second equation,

(3kg)*(10m/s)(1.5m) = (3kg)*(6m/s)(1.5m) + (1/3)(90/9.81kg)((2^2)m)w

which appeared to give you the correct answer.

For part B, consider the velocities of both the ball, and the pendulum. Velocity is a vector, and has both magnitude and direction. Which objects remain in the same direction, and which ones move?
 
Last edited:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top