One interesting consequence that appears to me to follow from his final formulation for the conserved Noether current (the one that is simplified by using the EFE) is that, if you can find a coordinate chart on a spacetime such that the timelike basis vector is independent of *all* the coordinates (i.e., its partial derivative with respect to all four coordinates is zero), then the total energy of that spacetime, by his definition, is zero. (This follows immediately from the formula I mentioned since it includes a multiplicative factor that depends on the partial derivatives.) An equivalent way of formulating the condition is that there must be a chart in which the metric coefficient ##g_{00}## is constant.
One obvious case that satisfies the above condition is any FRW spacetime in the standard FRW chart--i.e., not just the closed FRW spacetime that Gibbs specifically mentions in his paper, but *any* of the FRW spacetimes, since the metric in all of them obviously meets the condition of constant ##g_{00}##.