Conservation of Energy of the Center of Mass

AI Thread Summary
In classical mechanics, the energy of a system of particles is conserved, and this conservation extends to the energy of the center of mass. The discussion raises questions about the proof of this conservation for the center of mass energy, particularly under different interaction conditions, such as non-potential forces like magnetic interactions. It also explores whether similar conservation principles apply to other quantities associated with individual particles. The mention of Noether's Theorem suggests a link between symmetries and conservation laws, although its application to this specific scenario is unclear to some participants. The conversation highlights the complexities of energy conservation in multi-particle systems and the implications of different force types.
Luke Tan
Messages
29
Reaction score
2
In classical mechanics, the energy of a system of particles (say with 2 particles) in an external field is given by
$$E=\frac{1}{2}m_1|\vec{v}_1|^2+\frac{1}{2}m_2|\vec{v}_2|^2+V(\vec{r}_1)+V(\vec{r}_2)+V'(|\vec{r}_2-\vec{r}_1|)$$
Where V is the potential energy of the external field, and V' is the energy of interaction between the two particles. It is well known that ##\frac{dE}{dt}=0##, or that energy is conserved.

However, the energy of the center of mass is surprisingly also conserved
$$E'=\frac{1}{2}(m_1+m_2)(\frac{m_1\vec{v}_1+m_2\vec{v}_2}{m_1+m_2})^2+V(\frac{m_1\vec{r}_1+m_2\vec{r}_2}{m_1+m_2})$$
$$\frac{dE'}{dt}=0$$

This makes sense as macroscopically, everything is just made out of tiny particles and if this identity doesn't hold there would be no concept of a macroscopic object being treated as a particle.

However, is there any proof that the energy of the center of mass is conserved, based directly on the fact that the energy of the system is conserved? What are the conditions? For example, if the interactions between the particles in the system could not be described by a potential ##V'(|\vec{r}_2-\vec{r}_1|)##, such as in the case of magnetic forces, would this still hold? Must ##V## be linear in the coordinates?

In addition, does this hold for other quantities? For example, if every particle ##i## had a quantity ##\Omega_i(\vec{r}_i,\vec{p}_i)## associated with it such that ##\frac{d}{dt}(\sum_i \Omega_i(\vec{r}_i,\vec{p}_i))=0##, would ##\frac{d}{dt}\Omega(\vec{r}_{cm},\vec{p}_{cm})=0##?

Thanks!
 
Physics news on Phys.org
anorlunda said:
There is a simpler approach. Are you familiar with Noether's Theorem?
Not really, I know that it states that for every symmetry there is an associated conservation law and I have used it before for simpler conservation laws such as the conservation of momentum and angular momentum, but I don't really see how I would apply it to this.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top