Conservation of Linear momentum

AI Thread Summary
A 500g putty ball collides with a block on a frictionless surface, losing 25% of its kinetic energy. The conservation of momentum principle states that the initial momentum of the putty ball must equal the final momentum of the combined mass of the putty and block. The discussion emphasizes the importance of both momentum and kinetic energy equations to solve for the block's mass. Participants suggest focusing on the relationship between the final velocities of the two objects and using the known values to derive the unknowns. Clarifications on the equations and hints for the student are encouraged to facilitate understanding.
lisastar
Messages
2
Reaction score
0

Homework Statement


A 500g putty ball moving horizontally at 6m/s collides with and sticks to a block lying on a friction-less horizontal surface. If 25% of the kinetic energy is lost, what is the mass of the block?

Homework Equations


initial (i) = final (f)
m1v1+m2v2 = m1v1+m2v2

The Attempt at a Solution



(m1v1i - m1v1f ) /v2f I'm confused :-( Somebody help me solve this. Also is the reduction of the kinetic energy relevant to solving this question?
 
Physics news on Phys.org
lisastar said:
initial (i) = final (f)
Ummm, initial what = final what?
m1v1+m2v2 = m1v1+m2v2
The sum of the initial momentum of the putty blob and the final momentum of the block is equal to the sum of the initial momentum of the putty blob and the final momentum of the block? That's not a principle of physics. That's just the reflexive law for equality: A quantity is always equal to itself.

It would be more helpful to equate the sum of the initial momentum of the blob plus the initial momentum of the block to the sum of the final momentum of the blob plus the final momentum of the block.

Can you write down that equality?
 
That's what I wrote up there P (initial) = P (final) sorry it wasn't clear.
 
By conservation of momentum
m₁ u = (m₁+ m₂) v
v/u = m₁ /(m₁+ m₂) EQN 1
Kinetic Energy -->
(1/2)(m₁+ m₂) v ² = (1/2) 0.25 m₁ u² EQN 2
 
Momentum must be conserved. Therefore we can say ##\vec p = m_{ball} \vec v_{ball}## must equal ##\vec p = m_{ball+block} \vec v_{ball+block}##. We also know that kinetic energy in this case is given by ## KE=\frac 1 2 mv^2##. With the given data we can calculate the initial kinetic energy which we can then easily use to calculate the final kinetic energy. Since we also know the momentum as well, we can then solve for mass and velocity of the block by putting one of them in terms of the other, and plugging into the other equation.
 
sunnnystrong said:
By conservation of momentum
m₁ u = (m₁+ m₂) v
v/u = m₁ /(m₁+ m₂) EQN 1
Kinetic Energy -->
(1/2)(m₁+ m₂) v ² = (1/2) 0.25 m₁ u² EQN 2
This is getting a bit close to solving the problem for the student. Please start with hints, like "what do you know about the two final velocities?"
 
  • Like
Likes sunnnystrong
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top