Constructing a matrix from clues

  • Thread starter Thread starter Identity
  • Start date Start date
  • Tags Tags
    Matrix
Identity
Messages
151
Reaction score
0

Homework Statement



Construct a matrix whose null space is spanned by \left[\begin{matrix} 1 \\ 1 \\ 0 \\ 0 \end{matrix}\right] and \left[\begin{matrix} 1 \\ 0 \\ -1 \\ 1 \end{matrix}\right] and whose column space is spanned by \left[\begin{matrix} 1 \\ 1 \\ 0 \end{matrix}\right] and \left[\begin{matrix} 0 \\ 1 \\ -1 \end{matrix}\right]



The Attempt at a Solution



I figured that it must be a 3x4 matrix, due to the dimensions of the column space and null space.

Apart from that, I'm not really sure where to go, I would greatly appreciate some help :)
 
Physics news on Phys.org
Let's call your 3x4 matrix A. Each column of A must be a linear combination of (1 1 0)^T and (0 1 -1)^T.

Also, A*(1 1 0 0)^T = 0 and A*(1 0 -1 1)^T = 0, since those two vectors are in A's nullspace.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top