Continuity Equation in an Electromagnetic Field

Rubiss
Messages
21
Reaction score
0

Homework Statement



Derive the continuity equation for a charged particle in an electromagnetic field

Homework Equations



The time-dependent Schrodinger equation and its complex conjugate are

i\hbar\frac{\partial \psi}{\partial t}=\frac{1}{2m}(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})^{2}\psi+e\phi\psi

i\hbar\frac{\partial \psi^{*}}{\partial t}=\frac{1}{2m}(+i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})^{2}\psi^{*}+e\phi\psi^{*}

The Attempt at a Solution



I proceed in much the same way I would when deriving the continuity equation without a magnetic field. I multiply the top equation by psi-star, the bottom by psi and subtract the bottom equation from the top equation to obtain

\frac{\partial \rho}{\partial t} = \frac{-\hbar}{2mi}(\psi^{*}\vec{\nabla}^{2}\psi - \psi \vec{\nabla}^{2} \psi^{*})+\frac{e}{2mc}(2|\psi|^{2}\vec{\nabla} \cdot \vec{A}+\psi^{*}\vec{A} \cdot \vec{\nabla}\psi + \psi \vec{A} \cdot \vec{\nabla}\psi^{*})

Now I pull a divergence out of the first quantity in the parentheses on the right, and that becomes the the probability current when there is no magnetic field. Then I use the fact that the divergence of A is zero. This leaves me with

\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} + \frac{e}{2mc} (\psi^{*}\vec{A} \cdot \vec{\nabla}\psi + \psi \vec{A} \cdot \vec{\nabla}\psi^{*})

Now I pull the A out of parentheses:

\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} + \frac{e}{2mc} \vec{A} \cdot (\psi^{*}\vec{\nabla}\psi + \psi\vec{\nabla}\psi^{*})

This becomes

\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} + \frac{e}{2mc} \vec{A} \cdot (\vec{\nabla}|\psi|^{2})

and I can pull the gradient out because del dot A is zero:

\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} + \frac{e}{2mc} \vec{\nabla} \cdot (\vec{A}|\psi|^{2})

Now pull the divergence out of both terms:

\frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot (\vec{j} + \frac{e}{2mc}\vec{A}|\psi|^{2})

Now I am very close to the correct answer (I know because the result is on the page "probability current" on Wikipedia). My only problem is that there should NOT be a 2 in the denominator. I have spent a long time trying to find out why this 2 is there. Any help would be appreciated.
 
Physics news on Phys.org
Rubiss said:
The time-dependent Schrodinger equation and its complex conjugate are

i\hbar\frac{\partial \psi}{\partial t}=\frac{1}{2m}(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})^{2}\psi+e\phi\psi

i\hbar\frac{\partial \psi^{*}}{\partial t}=\frac{1}{2m}(+i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})^{2}\psi^{*}+e\phi\psi^{*}

I multiply the top equation by psi-star, the bottom by psi and subtract the bottom equation from the top equation to obtain

\frac{\partial \rho}{\partial t} = \frac{-\hbar}{2mi}(\psi^{*}\vec{\nabla}^{2}\psi - \psi \vec{\nabla}^{2} \psi^{*})+\frac{e}{2mc}(2|\psi|^{2}\vec{\nabla} \cdot \vec{A}+\psi^{*}\vec{A} \cdot \vec{\nabla}\psi + \psi \vec{A} \cdot \vec{\nabla}\psi^{*})

See if you can show that you are missing a couple of factors of 2 above. I think it should be

\frac{\partial \rho}{\partial t} = \frac{-\hbar}{2mi}(\psi^{*}\vec{\nabla}^{2}\psi - \psi \vec{\nabla}^{2} \psi^{*})+\frac{e}{2mc}(2|\psi|^{2}\vec{\nabla} \cdot \vec{A}+2\psi^{*}\vec{A} \cdot \vec{\nabla}\psi + 2\psi \vec{A} \cdot \vec{\nabla}\psi^{*})
 
TSny said:
See if you can show that you are missing a couple of factors of 2 above. I think it should be

\frac{\partial \rho}{\partial t} = \frac{-\hbar}{2mi}(\psi^{*}\vec{\nabla}^{2}\psi - \psi \vec{\nabla}^{2} \psi^{*})+\frac{e}{2mc}(2|\psi|^{2}\vec{\nabla} \cdot \vec{A}+2\psi^{*}\vec{A} \cdot \vec{\nabla}\psi + 2\psi \vec{A} \cdot \vec{\nabla}\psi^{*})

I think you're right, but I have rewritten my steps many times, and do not get that factor of 2 to show up. Very frustrating.
 
Rubiss said:
I think you're right, but I have rewritten my steps many times, and do not get that factor of 2 to show up. Very frustrating.

For

i\hbar\frac{\partial \psi}{\partial t}=\frac{1}{2m}(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})^{2}\psi+e\phi\psi

try writing it as

i\hbar\frac{\partial \psi}{\partial t}=\frac{1}{2m}(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})\cdot (-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})\psi+e\phi\psi

First write out ##(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})\psi## and then operate on the result with the other ##(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})##. If you encounter ##\vec{\nabla}\cdot(\vec{A}\psi)## then remember that ##\vec{\nabla}## operates on both ##\vec{A}## and ##\psi## according to the product rule.
 
TSny said:
For

i\hbar\frac{\partial \psi}{\partial t}=\frac{1}{2m}(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})^{2}\psi+e\phi\psi

try writing it as

i\hbar\frac{\partial \psi}{\partial t}=\frac{1}{2m}(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})\cdot (-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})\psi+e\phi\psi

First write out ##(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})\psi## and then operate on the result with the other ##(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})##. If you encounter ##\vec{\nabla}\cdot(\vec{A}\psi)## then remember that ##\vec{\nabla}## operates on both ##\vec{A}## and ##\psi## according to the product rule.


Ah, yes! That is the crucial part I was missing - del acts on both psi and A.

Thanks so much!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top