MHB Continuous random variable question

AI Thread Summary
A continuous random variable x has a defined probability function f(X)=(X+1)/8 for -1<=X<=3. Users are encouraged to share their progress when asking for help to facilitate better assistance. The mean of X was calculated using integration, yielding a value of 5/3, which is confirmed as correct. To find Pr(X<=2), it is suggested to utilize the relationship between probability and the area under the density function. Understanding these concepts is essential for solving the posed questions effectively.
dylbester
Messages
4
Reaction score
0
A continuous random variable x has the following probability function:
f(X)=(X+1)/8
-1<=X<=3
0 Otherwise

1. Find the Pr(X<=2)
2. Find the mean of X
 
Mathematics news on Phys.org
Hello and welcome to MHB! :D

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far, here and in your other threads?
 
mean of X is defined as ∫ x * f (x) dx over the domain of definition of X
∫ x (x + 1) / 8 dx
= ∫ (x^2 + x) / 8 dx
= x^3 / 24 + x^2 / 16 + c
Over the interval [-1, 3], we get:
(3^3 - (-1)^3) / 24 + (3^2 - (-1)^2) / 16
= 7/6 + 1/2
= 5/3

Im I right?
 
Last edited:
Your calculation of the expected value (=mean) is correct. Have you already figured out how to compute $\mathbb{P}(X \leq 2)$?

Hint: use the link between a probability and the area under a density function
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top