Control Volumes - Fluid Mechanics

AI Thread Summary
Control volumes are essential for analyzing fluid flow, particularly in steady-state conditions. When water flows into a cup, the mass flow entering must equal the mass flow exiting, regardless of the control volume's shape. To illustrate momentum and mass flows, one should define a boundary around the cup and consider forces acting in the vertical direction, including surface and body forces. The analysis simplifies if the cup is stationary, allowing for straightforward application of conservation principles. Understanding these concepts is crucial for effectively illustrating fluid dynamics in practical scenarios.
sierra52
Messages
10
Reaction score
4
After doing extensive research, I am still confused about Control Volumes. Say that there is water flowing into a cup at a steady rate, and I am required to illustrate the momentum and mass flows, as well as the forces, how would I approach this? I have seen examples of Control Volumes but they do not reflect simple vertical flow and do not contain much information.

Thanks.
 
Engineering news on Phys.org
I am honestly not sure what you are asking here. What do you mean by "illustrate the momentum and mass flows"?
 
boneh3ad said:
I am honestly not sure what you are asking here. What do you mean by "illustrate the momentum and mass flows"?
So depicting (via an illustration of the control volume) the mass flow and momentum of the fluid as it enters and leaves the control volume, noting that the flow is steady and vertical. I'm not sure at all how I sketch this. I hope this clarifies things. Thanks.
 
A control volume represents a basically imaginary region containing volume and as it relates to mass flow, the entering and exiting mass flow from a control volume must always be equal regardless of the shape of the control volume size or configuration between the fluid entry and exit end points.

(Note Edited to remove earlier erroneous statement related to momentum and inlet vs. outlet areas deleted.)
 
Last edited:
I am a bad engineer but let's give it a try :P
This question is not very clear, please provide some more information, is the cup stationary or moving, what is the hose dia, what is the velocity of water? Assuming the simplest case, the flow is steady,
you have first imagine a boundary across your cup, let for example the cup is resting on a flat surface and water is entering the cup vertically,

Untitled.jpg
the total amount of forces acting in y directing would be:
Capture.JPG


as the flow is steady C.V term would cancel out,
Fs = surface forces.
Fb = body forces.
from the assumption that the cup is at rest, Fs= Ry ;reaction.
Fb= weight of the cup plus weight of the water.
Capture.JPG


Capture.JPG
 
You don't need a control volume (a conceptual thing) if you already have a cup a real thing).
In either case you can then proceed with normal physics, starting with mass/volume conservation.
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Back
Top