Convergence Analysis for Advection Equation in 1D with Varying Steps

  • Thread starter Thread starter Winzer
  • Start date Start date
  • Tags Tags
    Convergence
Winzer
Messages
597
Reaction score
0

Homework Statement


Suppose I have coded up the advection equation in one spatial dimension and in time. I
give it an initial profile, and watch it evolve over time. I very the number of xsteps and time steps.
How would I do a convergence analysis?
 
Physics news on Phys.org
So...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top