MHB Glad to hear that the answer is correct! You are welcome, happy to help.

  • Thread starter Thread starter shyjuu
  • Start date Start date
  • Tags Tags
    Convergence
AI Thread Summary
The convergence criterion |f(x0)f''(x0)|<|f'(x0)|^2 is confirmed to apply to the Newton-Raphson method, which was initially questioned. The formula is not commonly found in standard resources, leading to some confusion among participants. The discussion includes a reminder of the Newton iterations and the conditions for convergence. Ultimately, the correct answer is affirmed as option (a), the Newton-Raphson method. This clarification helps solidify understanding of the convergence criteria in numerical methods.
shyjuu
Messages
13
Reaction score
0
|f(x0)f''(x0)|<|f'(x0)|^2 where I is the interval containing the approximate root x0, is the convergence criterion of ...

(a) Newton - Raphson method
(b) Iteration method
(c) Secant method
(d) False position method

According to me its (a), but I confused because this formula is not directly given anywhere I had searched a lot on the internet, can anybody confirm what is the correct answer

Thanks a lot in advance
 
Mathematics news on Phys.org
ssss said:
|f(x0)f''(x0)|<|f'(x0)|^2 where I is the interval containing the approximate root x0, is the convergence criterion of ...

(a) Newton - Raphson method
(b) Iteration method
(c) Secant method
(d) False position method

According to me its (a), but I confused because this formula is not directly given anywhere I had searched a lot on the internet, can anybody confirm what is the correct answer

Thanks a lot in advance

Wellcome on MHB $SS^{2}$!...

... remembering the Newton iterations...

$$x_{n+1}= x_{n} - \frac{f(x_{n})}{f^{\ '} (x_{n})}\ (1) $$

... if is... $$\frac{|f(x_{0})\ f^{\ '}(x_{0})|}{|f^{\ '\ 2}(x_{0})|}= \frac{|f(x_{0})|}{|f^{\ '}(x_{0}|}= a < 1\ (2)$$

... and that holds for any $x_{0}$. then the sequence of $x_{n}$ obeys to the difference equation... $$ x_{n+1} - x_{n}= (\pm a)^{n}\ (3)$$... and it converges... Kind regards $\chi$ $\sigma$
 
Last edited:
chisigma said:
Wellcome on MHB $SS^{2}$!...

... remembering the Newton iterations...

$$x_{n+1}= x_{n} - \frac{f(x_{n})}{f^{\ '} (x_{n})}\ (1) $$

... if is... $$\frac{|f(x_{0})\ f^{\ '}(x_{0})|}{|f^{\ '\ 2}(x_{0})|}= \frac{|f(x_{0})|}{|f^{\ '}(x_{0}|}= a < 1\ (2)$$

... and that holds for any $x_{0}$. then the sequence of $x_{n}$ obeys to the difference equation... $$ x_{n+1}= \pm a\ x_{n}\ (3)$$... and it converges... Kind regards $\chi$ $\sigma$

so I was right answer is Newton Rapshon option a, Thanks a lot for explanation
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top