Convergence/Divergence of series

  • Thread starter Thread starter Thomas_
  • Start date Start date
  • Tags Tags
    Series
Thomas_
Messages
20
Reaction score
0
Hello,

I have to prove conv/div. for the following series:

\sum\frac{(2n)!}{n^n}

I use the "ratio-test" and get the following:

\lim_{n\to\infty} \frac{a_{n+1}}{a_{n}} = \lim_{n\to\infty} \frac{(2n+2)!}{(2n)!} \frac{n^n}{(n+1)^{n+1}} = \lim_{n\to\infty} \frac{(2n+2)(2n+1)}{(n+1)} (\frac{n}{1+n})^n = \infty \frac{1}{e} = \infty

This means the series diverges, however, the series should converge (I could find the finite sum online).

Where is my mistake?

Thank you!
 
Mathematics news on Phys.org
The last half terms can be written as {(n+l)/n}{(n+2)/n}{(n+3)/n}...{2n/n}, and the first n terms are just n!.
 
robert Ihnot said:
The last half terms can be written as {(n+l)/n}{(n+2)/n}{(n+3)/n}...{2n/n}, and the first n terms are just n!.
Sorry, I do not quite understand what you mean or how this helps me. Could you elaborate on that?

Also, I am interested in why the test I am using does not work out like it should or if I made an algebra mistake somewhere along the way.
 
Using stirlings approximation to replace the factorial, I get the series diverges. Where did you find online its sum?
 
Thomas_ said:
Sorry, I do not quite understand what you mean or how this helps me. Could you elaborate on that?

Also, I am interested in why the test I am using does not work out like it should or if I made an algebra mistake somewhere along the way.

What he's saying is that if you split it up, you get 1/n*1/n*1/n...*(2n)(2n-1)(2n-2)...(n+1)*n!

So you put one n under each 2n-k and get

2n/n*(2n-1)/n*(2n-2)/n...*(n+1)/n*n!

As each (2n-k)/n>1, and n!>1, each term in the series is >1. So there's very little reason why it would converge
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top