Convergence of Alternating Series: True or False? Explanation and Examples

  • Thread starter Thread starter Spruance
  • Start date Start date
Spruance
Messages
33
Reaction score
0
True or false, justify your answer

1) If \sum_{n=1}^\infty a_n converges, then \sum_{n=1}^\infty (-1)^n \ a_n converges.

2) If \sum_{n=1}^\infty a_n converges and \sum_{n=1}^\infty (-1)^n \ a_n converges, then \sum_{n=1}^\infty a_n converges absolutely.

3) If \sum_{n=1}^\infty a_n converges absolutely, then \sum_{n=1}^\infty (-1)^n \ a_n converges absolutely.

Can anybody help me with this one?

Thanks in advance
 
Last edited:
Physics news on Phys.org
your [t e x] tags must be in lower case.

~H
 
Thank you, Hootenanny. That fixed everything!
 
RE: Your question, what are the criteria for absolute convergence?

~H
 
Or, what is the definition of "absolute convergence"?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top