Convergence of Alternating Series with Tricky Terms

Gauss177
Messages
38
Reaction score
0

Homework Statement


Test the series for convergence or divergence using the Alternating Series test:

1. sum of (-1)^n * n/(ln n)

2. sum of [sin(n*pi/2)]/n!

Homework Equations




The Attempt at a Solution


1. lim of n/(ln n) goes to infinity (as n->infinity), so it can't satisfy the Alternating Series test. Then if I take limit of the entire sum, I can't figure out what it comes to. I think the limit doesn't exist so the whole thing is divergent, but I'm not sure how to get it.

2. No clue on this one, it's not in the "proper format" as the examples I've seen.

Thanks
 
Physics news on Phys.org
1. See if the taylor series for ln x helps.

2. Consider the terms of this series in pairs, n=0,1. What do you notice with the sin part?

EDIT: More clues, because i want to be generous :D

Whats zero divided by anything (other than zero)? You should be able to get that sum to now look like

\frac{1}{\sqrt{2}} \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} Does that converge :)?
 
Last edited:
1. One of the first things you learn about series is that if an does NOT go to 0, then \Sigma a_n does NOT converge.

2. Is this an alternating series? What is the "alternating series test"?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top