Convergence of n^(1/n) Sequence: Proving Convergence to 1

  • Thread starter Thread starter nicksauce
  • Start date Start date
  • Tags Tags
    Convergence
nicksauce
Science Advisor
Homework Helper
Messages
1,270
Reaction score
7

Homework Statement


Let x_n=n^{\frac{1}{n}} be a sequence. Does it converge, and if so to what value?

Homework Equations


The Attempt at a Solution


Clearly it will converge to 1, so that's what we want to prove.
\forall \epsilon>0\exists N \textnormal{s.t.} m>N \rightarrow |m^{\frac{1}{m}}-1| < \epsilon.

...And then I am stuck... any hints on how to select N?
 
Physics news on Phys.org
You could try and find a weaker case for selecting N. For example, If \epsilon, N>0

N < (\epsilon + 1)^{N-1} < (\epsilon + 1)^{N}. Can you see where I'm going with this?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top