Convergence of non increasing sequence of random number

ensei
Messages
2
Reaction score
0
I have a non-increasing sequence of random variables \{Y_n\} which is bounded below by a constant c, \forall \omega \in \Omega. i.e \forall \omega \in \Omega, Y_n \geq c, \forall n. Is it true that the sequence will converge to c almost surely?

Thanks
 
Physics news on Phys.org
Hint: If c is such a constant, what about c-1?
 
mfb said:
Hint: If c is such a constant, what about c-1?

All the elements of the sequence are bounded below by c. So, I am not sure what are you trying to say. can you please elaborate?
 
His point is that if the set is bounded below by c, it is also bounded below by c-1 or, for that matter any number less than c. Just saying "bounded below by c" does NOT tell you very much. You seem to be confusing "lower bound" with "greatest lower bound".
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
3
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
10
Views
2K
Replies
3
Views
3K
Back
Top