Testing Convergence of Series: \Sigma^{\infty}_{n=1}\left[1/3^{ln\:n}}\right]

hobbes33
Messages
7
Reaction score
0
\Sigma^{\infty}_{n=1}\left[1/3^{ln\:n}}\right]

How do I go about testing the convergence of this series?

I have no clue which method I should be using, since most tests fails on this one.

You don't have to show me everything, just a nudge in the right direction should get me going on this question :)
 
Physics news on Phys.org
Might help to know that 3^{\ln{n}}=3^{\frac{\log_{3}{n}}{\log_{3}{e}}}=n^\frac{1}{{\log_{3}{e}}}
 
zcd said:
Might help to know that 3^{\ln{n}}=3^{\frac{\log_{3}{n}}{\log_{3}{e}}}=n^\frac{1}{{\log_{3}{e}}}

Ah, here's the critical link. I got it, thanks! :D
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top