Convergence of Sin: Does it Approach 1 or 1/2?

  • Thread starter Thread starter razored
  • Start date Start date
  • Tags Tags
    Sin
razored
Messages
173
Reaction score
0
Determine whether this converges. If so, what number?

http://texify.com/img/\LARGE\!\Sigma[/URL] _{0}^{ \infty } \sin^n (\frac{ \pi }{4} %2B n \pi).gif[/PLAIN]

When I start plugging in values, I get :
n= 0 f(n)=1
n=1 f(n)= -\sqrt{2}/2
n=2 f(n)= \sqrt{2}/2

Using the formula, a/(1-r), I substitute and get 1/(1+1)=1/2. But when i look at the values in the table, it seems to approach 1.

So does it approach 1 or 1/2 ?
 
Last edited by a moderator:
Physics news on Phys.org
First, that formula for evaluating geometric series is only valid for -1 < r < 1, so your application to a ratio of -1 is incorrect.

Second, your evaluation of the term itself for n=2 is incorrect. It should be 1/2, so the sum is 1 - 1/sqrt(2) + 1/2 thus far.

Determine the form of the nth term first (with no sin involved). You should find that it leads to a familiar type of series.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top