thebetapirate
- 9
- 0
I ran into this proof in one of my textbooks and was wondering if anybody could lead me in the right logical direction. I can prove the first-differentiable continuous case but the infinity case throws me off. Please help if you can!
Thanks!
Suppose \left\{f}\right\}\subset C_{\infty}\left(\left[a,b\right]\right) such that \left{f\right}_{n} converges uniformly to some \left{f\right}\in C_{\infty}\left(\left[a,b\right]\right). Prove that:
\int^a_b\left{f\right}_{n}\left(x\right)dx \rightarrow \int^a_b\left{f\right}\left(x\right)dx
Thanks!
Suppose \left\{f}\right\}\subset C_{\infty}\left(\left[a,b\right]\right) such that \left{f\right}_{n} converges uniformly to some \left{f\right}\in C_{\infty}\left(\left[a,b\right]\right). Prove that:
\int^a_b\left{f\right}_{n}\left(x\right)dx \rightarrow \int^a_b\left{f\right}\left(x\right)dx