in polar coordinates r=(x^2+y^2)^1/2 and also x=rcosQ ,y=rsinQ so putting these in above equation and cosQ=x/r we get( x^2+y^2)^1/2=15/(3-2*x/( x^2+y^2)^1/2) now this can be solved
#3
protonchain
98
0
In case Vandanak's brilliant solution is hard to read, I've formatted his statements in TeX
I'm reviewing Meirovitch's "Methods of Analytical Dynamics," and I don't understand the commutation of the derivative from r to dr:
$$
\mathbf{F} \cdot d\mathbf{r} = m \ddot{\mathbf{r}} \cdot d\mathbf{r} = m\mathbf{\dot{r}} \cdot d\mathbf{\dot{r}}
$$