- #1
- 928
- 30
Hi all,
Consider a platform with angular velocity ##\omega##. A particle on top of it has a velocity with only ##\hat \theta## component (no radial ##\hat r## velocity). In this case, the inertial forces read:
$$
F_{in} = 2m\omega V_\theta \, \hat r + m \omega^2 r \, \hat r
$$
If ##V_\theta = -(\omega r)/2## the intertial forces apparently cancel out. Is it possible? I am a bit confuse with this situation. The particle seems not to be even at rest wrt the lab reference frame.
Any comment is wellcome.
Best wishes,
DaTario
Consider a platform with angular velocity ##\omega##. A particle on top of it has a velocity with only ##\hat \theta## component (no radial ##\hat r## velocity). In this case, the inertial forces read:
$$
F_{in} = 2m\omega V_\theta \, \hat r + m \omega^2 r \, \hat r
$$
If ##V_\theta = -(\omega r)/2## the intertial forces apparently cancel out. Is it possible? I am a bit confuse with this situation. The particle seems not to be even at rest wrt the lab reference frame.
Any comment is wellcome.
Best wishes,
DaTario