ManishR
- 88
- 0
the proof of http://en.wikipedia.org/wiki/Fermat%27s_theorem_%28stationary_points%29" from stewart calculus is in the pdf.
In short, the author has done something like this,
consider,
m\leq0
\Rightarrow\frac{m}{n}\leq0
so
\frac{m}{n}\leq0 if n>0 .....[1]
and
\frac{m}{n}\geq0 if n<0 .....[2]
from inqualties [1] & [2]
\frac{m}{n}=0
\Rightarrow m=0
which is incorrect because in
n of [1] =/= n of [2]
correct proof
Fermat Theoram Statement:
If
f(c)\geq f(c+k) OR f(c)\leq f(c+k) where a-c\leq k\leq b-c
Then
\left[\frac{df(x)}{dx}\right]_{x=c}=0
Proof:
\left[\frac{df(x)}{dx}\right]_{x=c}=\frac{df(c)}{dx}
\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=\frac{dM}{dx} where M=f(c)
\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=lim_{h\rightarrow0}\frac{M(x+h)-M(x)}{h}
\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=lim_{h\rightarrow0}\frac{0}{h} because M(x+h)=M(x)
\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=0
so question is am i right ?
In short, the author has done something like this,
consider,
m\leq0
\Rightarrow\frac{m}{n}\leq0
so
\frac{m}{n}\leq0 if n>0 .....[1]
and
\frac{m}{n}\geq0 if n<0 .....[2]
from inqualties [1] & [2]
\frac{m}{n}=0
\Rightarrow m=0
which is incorrect because in
n of [1] =/= n of [2]
correct proof
Fermat Theoram Statement:
If
f(c)\geq f(c+k) OR f(c)\leq f(c+k) where a-c\leq k\leq b-c
Then
\left[\frac{df(x)}{dx}\right]_{x=c}=0
Proof:
\left[\frac{df(x)}{dx}\right]_{x=c}=\frac{df(c)}{dx}
\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=\frac{dM}{dx} where M=f(c)
\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=lim_{h\rightarrow0}\frac{M(x+h)-M(x)}{h}
\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=lim_{h\rightarrow0}\frac{0}{h} because M(x+h)=M(x)
\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=0
so question is am i right ?
Attachments
Last edited by a moderator: