Correlation with two independent variables

rhuelu
Messages
17
Reaction score
0
I would appreciate some help with this problem. Assuming X and Y are independent, I'm trying to find the correlation between XY and Y in terms of the means and standard deviations of X and Y. I'm not sure how to simplify cov(XY,Y)=E(XYY)-E(XY)E(Y)
=E(XY^2)-E(X)E(Y)^2.

If X and Y are independent, does it follow that X and Y^2 are independent. If this is the case, then covariance is zero --> correlation is zero. If this isn't the case I'm really not sure how to proceed. Any help is appreciated...
 
Physics news on Phys.org


rhuelu said:
I would appreciate some help with this problem. Assuming X and Y are independent, I'm trying to find the correlation between XY and Y in terms of the means and standard deviations of X and Y. I'm not sure how to simplify cov(XY,Y)=E(XYY)-E(XY)E(Y)
=E(XY^2)-E(X)E(Y)^2.

If X and Y are independent, does it follow that X and Y^2 are independent.
yes.
If this is the case, then covariance is zero --> correlation is zero. If this isn't the case I'm really not sure how to proceed. Any help is appreciated...
 


how would you prove this?
 


rhuelu said:
how would you prove this?

what do you mean by "independent"?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top