There several different ways to handle
x_1'= a- ax_1- ax_2
x_2'= b- bx_1- bx_2
The more "elementary" method would be to differentiate the first equation again:
x_1''= -ax_1'- ax_2'= ax_1'- a(b- bx_1- bx_2)= (a+ ab)x_1+ abx_2- ab<br />
but, from the first equation, multiplied by b, abx_2= ab- bx_1&amp;#039;- abx_1so &amp;lt;br /&amp;gt;
x_1&amp;amp;amp;#039;&amp;amp;amp;#039;= (a+ ab)x_1+ (ab- bx_1&amp;amp;amp;#039;- abx_1)- ab&amp;lt;br /&amp;gt;
x_1&amp;amp;amp;#039;&amp;amp;amp;#039;+ bx_1&amp;amp;amp;#039;- ax_1= 0.&amp;lt;br /&amp;gt;
That has characteristic equation r^2+ br- a= 0 with roots r= \frac{-b\pm\sqrt{b^2+ 4a}}{2} so that x_1(t)= e^{-bt}(C_1e^{\sqrt{b^2+ 4a}t}+ C_2e^{-\sqrt{b^2+ 4a}t} if b^2+ 4a&amp;amp;amp;gt;0, x_1(t)= e^{-bt}(C_1 cos(\sqrt{-b^2- 4a}t)+ C_2 sin(\sqrt{-b^2- 4a}t) if b^2+ 4a&amp;amp;amp;lt; 0, or x_1(t)= e^{-bt}(C_1+ C_2t) if b^2+ 4a= 0.&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
In any case, x_2= (ab- bx_1&amp;amp;amp;#039;- abx_1)/ab.&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
A more &amp;amp;quot;sophisticated&amp;amp;quot; method would be to write the differential equations as a matrix equation:&amp;lt;br /&amp;gt;
\begin{pmatrix}x_1 \\ x_2\end{pmatrix}&amp;amp;amp;#039;= \begin{pmatrix}-a &amp;amp;amp;amp; -a \\ -b &amp;amp;amp;amp; -b\end{pmatrix}\begin{pmatrix}x_1 \\ x_2 \end{pmatrix}+ \begin{pmatrix}a \\ b\end{pmatrix}&amp;lt;br /&amp;gt;
&amp;lt;br /&amp;gt;
The characteristic equation for that matrix is &amp;lt;br /&amp;gt;
\left|\begin{array}{cc}-a- \lambda &amp;amp;amp;amp; -a \\ -b &amp;amp;amp;amp; -b- \lambda\end{array}\right|= (-a- \lambda)(-b- \lambda)- ab= \lambda^2+ (a+ b)\lambda= 0&amp;lt;br /&amp;gt;
which has roots \lambda= 0 and \lambda= -a- b.&amp;amp;amp;lt;br /&amp;amp;amp;gt;
We can find the eigenvectors corresponding to those eigenvectors and so diagonalize the matrix,