Covariance of Discrete Random Variables

Shackman
Messages
22
Reaction score
2

Homework Statement


Find E(XY), Cov(X,Y) and correlation(X,Y) for the random variables X, Y whose joint distribution is given by the following table.

X
1 2 3
Y -1| 0 .1 .1

0| 0 .5 .6

1| .2 0 0

The Attempt at a Solution



The covariance and correlation fall into place quite easily once I have found E(XY). I have found E(X), E(Y), Var(X) and Var(Y) but none of these values help as the variables are not independent. So in trying to find E(XY), I am trying to set up the double integral, but am confused by the fact that the variables are discrete. The limits of integration are not obvious and it is not obvious how to integrate a discrete function either. Is there another way I can look at this?
 
Last edited:
Physics news on Phys.org
E[XY]=\sum\sum xyf(x,y)
 
That is so much better. Thanks. The organization of my book is pretty terrible, I'm just finding that equation now.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top