PeroK said:
It's up to you how you choose to try to learn physics, but with this approach you seem to be spending a lot of time going round in circles.
Newton's laws are supposed to be conceptually simple. I really can't understand the problem here.
I think, it's an important issue to learn, how symmetry arguments work in physics, and Newtonian mechanics is a very good example to be thoroughly studied.
Newtonian mechanics starts (as all of physics) with an assumption about how to describe time and space, and as we know from the 19th century developments in math and particularly geometry, one can most efficiently describe the structure of space (and as we know since the early 20th century with the discovery of relativistic space-time models, rather the structure of spacetime) by investigating its symmetries.
For Newtonian mechanics one has by assumption a fixed 3D Euclidean affine space with its symmetries being homogeneity (translation invariance), isotropy (invariance under rotations). Time and space are completely independent of each other by assumption (Newton's concept of absolute time and absolute space). Time thus is simply a one-dimensional directed continuum with homogeneity (time-translation invariance) as the assumed symmetry. Last but not least the physics is invariant under Galilei boosts, i.e., there is a class of preferred reference frames, where Newton's 1st Law holds, which is the special principle of relativity.
Now you have a mathematical framework you can use to make assumptions about the physical laws, which all must obey these symmetry principles. The most appropriate framework is the Hamilton principle of least action (equivalently in Lagrange and Hamiltonian formulation) to write down an action of, say, a system of interacting point particles which obey all these symmetries. This leads to the usual laws with instantaneous conservative interaction forces between point particles (in the most simplest cases covering almost all practical applications of particle-pair forces).
The symmetries imply the conservation laws (thanks to Emmy Noether), and the symmetries of Newtonian spacetime lead to conservation of energy (homogeneity of time), conservation of momentum (homogeneity of space), angular momentum (isotropy of space), center-of-mass motion (Galilei-boost invariance).
As you rightly say, in Newtonian physics one assumes mass to be a scalar under the full Galilei group. For the acceleration you get that it is Galilei invariant too. From Newton's 2nd Law this indeed implies that the force must be a Galilei invariant either. This constrains the proper force laws to the ones you usually use, e.g., the Newton model of gravitational interactions, which implies that a point particle system can be described by central conservative pair forces, i.e., they are derivable from a potential
$$V(\vec{r}_1,\ldots,\vec{r}_2)=\frac{1}{2} \sum_{j \neq k} V_2(|\vec{r}_j-\vec{r}_k|.$$
Then the force on particle $j$ is given by
$$\vec{F}_j=-\vec{\nabla}_j V,$$
and it's pretty straight forward to see that this obeys all the symmetries of Newton spacetime. For Galilei boosts it's pretty simple. You have
$$\vec{r}_j'=\vec{r}_j+\vec{v} t, \quad \vec{v}=\text{const}.$$
Then
$$\vec{r}_j-\vec{r}_k=\vec{r}_j'-\vec{r}_k',$$
and thus
$$V'(\vec{r}_1',\ldots,\vec{r}_2')=V(\vec{r}_1,\ldots,\vec{r}_2),$$
i.e., the interaction potential is a scalar and thus ##\vec{F}## a vector under the full Galilei symmetry transformation group.