How do I convert amps to pull force for an electric motor?

In summary, you need to find out the power required to turn an amp and then use that power to generate the desired torque.
  • #1
Makin_it_turn
4
0
Coverting Amp to pull force??

I am trying to figure out a way to covert amps to pull force(lbs). I have a known amp that I would like to find out the pull force in lbs.

I have 2.8 amp @ 120v and would like to know the pull force that is needed to turn this type of amperage.
 
Physics news on Phys.org
  • #2


Are you referring to the force from an electromagnet?
 
  • #3


Yes and no...

No in the case that I am working with neodymium magnets...and yes that I believe that the strengh of pull are both rated the same (pull force lbs)
 
  • #4


Amp is a measure of electrical current and does not directly relate to a pull force, so I don't understand your question. Are you trying to generate electrical power or something? Please give us some details of what you are trying to do.
 
  • #5


I have an electric motor that I'm "modifying". The motor is rated at 2.8amp @ 115v. Given simplified version of calculating horsepower. (a * v = w)*.0013=HP, my motor is .43hp. Where I get stuck is converting HP to pull force, I think this would be the easiest way. I am trying to make a system to convert magnet pull force into a rated HP to replace said motor. In other words, replace electrically created magnetic force into just magnet force ie: electricless motor :) I think what I need is a formula to calculate two like forces (pull force and hp) ...I hope this helps! It's been hindering me for a week
 
  • #6


Why don't you just find the torque generated by the motor and use that instead of "pull force". I'm not even sure what you mean by pull force. What is pulling what?
 
  • #7


Makin_it_turn said:
I have an electric motor that I'm "modifying". The motor is rated at 2.8amp @ 115v. Given simplified version of calculating horsepower. (a * v = w)*.0013=HP, my motor is .43hp. Where I get stuck is converting HP to pull force, I think this would be the easiest way. I am trying to make a system to convert magnet pull force into a rated HP to replace said motor. In other words, replace electrically created magnetic force into just magnet force ie: electricless motor :) I think what I need is a formula to calculate two like forces (pull force and hp) ...I hope this helps! It's been hindering me for a week

Are you saying you are trying to create a motor powered by magnets only? If so I have some bad news for you.
 
  • #8


mesa said:
Are you saying you are trying to create a motor powered by magnets only? If so I have some bad news for you.

Ah, I missed that part of his post I guess. You are correct, replacing the electrical components with permanent magnets will not work.
 
  • #9


hp is without crank/arm of wrench to resist

resistance is proportional to the length of the arm the wrench
torqe = force * length of wrench
 
  • #10


possibly... Given my original amps and volts, is there a way to calculate the pull the the winding are generating?
 
  • #12


Power can't give you the pull force. It depends on how fast you are pulling something. To pull something twice as fast at the same pull force, you need twice as much power. And vice versa. To pull something with twice as much force at the same speed requires the same doubling of power.

Alternatively, but following the same logic as above, you can only get torque of an electric motor if you know at which RPM you are going to need that torque. Power divided by angular velocity will give you torque.

The current times voltage is, indeed, power consumed by the motor. You do have to subtract the power wasted to heat, however. So the full formula is IV - IR², where R is the resistance of the coil.

Finally, keep in mind that simply because the motor is rated at 2.8A and 115V, it doesn't mean it will be drawing 2.8A at 115V. The amount of current the motor draws will depend on the RPMs the motor is going at and applied voltage. The formula for current is I=(V-kω)/R, where R is aforementioned resistance, V is applied voltage, ω is angular velocity, and k is a constant unique to the motor. If you know the maximum RPM the motor reaches under no load and given voltage, you can estimate that constant by k=V/ωmax.

Replacing magnets in a motor will effectively alter the constant k. R will remain the same, unless you change the coils as well. And these two constants effectively determine performance of an electric motor under ideal conditions. Naturally, real world tends to be slightly more complicated, but it's a very good estimate to start off with.

Hope some of that helps.
 

Related to How do I convert amps to pull force for an electric motor?

1. How do you convert Amp to pull force?

To convert from Amp to pull force, you will need to use Ohm's Law, which states that the current (I) is equal to the voltage (V) divided by the resistance (R). The formula for this is: I = V/R. Once you have determined the current, you can then use the formula F = I * L, where F is the pull force, I is the current, and L is the length of the wire.

2. What is the relationship between Amp and pull force?

The relationship between Amp and pull force is that pull force is directly proportional to the current. This means that as the current increases, the pull force will also increase, and vice versa. This relationship is described by the formula F = I * L, where F is the pull force, I is the current, and L is the length of the wire.

3. Can you convert Amp to pull force for any material?

Yes, you can convert Amp to pull force for any material as long as you know the material's resistance. The resistance of a material is a constant value that can be measured and used in the formula F = I * L to calculate the pull force. However, the material's resistance may vary depending on factors such as temperature and composition, so it is important to use the correct value for accurate results.

4. What is the unit of measurement for pull force?

The unit of measurement for pull force is Newtons (N), which is a unit of force in the International System of Units (SI). This unit is equivalent to the force required to accelerate a mass of one kilogram by one meter per second squared. In some cases, pull force may also be measured in pounds (lbs) or kilograms (kg).

5. Can you convert pull force to Amp?

Yes, it is possible to convert pull force to Amp, but the process is not as straightforward as converting Amp to pull force. To do this conversion, you will need to know the resistance of the material and the length of the wire. Then, you can rearrange the formula F = I * L to solve for I, which will give you the current in Amps. However, this conversion may not be accurate as it does not take into account other factors such as the material's properties and the wire's insulation.

Similar threads

  • Other Physics Topics
Replies
3
Views
2K
  • Other Physics Topics
Replies
15
Views
5K
  • Electrical Engineering
Replies
7
Views
6K
  • Classical Physics
Replies
9
Views
543
  • Introductory Physics Homework Help
Replies
4
Views
396
  • Other Physics Topics
Replies
1
Views
2K
Replies
6
Views
2K
Replies
8
Views
865
  • Classical Physics
Replies
5
Views
170
  • Other Physics Topics
Replies
3
Views
2K
Back
Top