Critical Numbers, local extrema, max/min

davemoosehead
Messages
26
Reaction score
0

Homework Statement



Classify the local extrema of f(x) = x/2 + cos(x), 0 <= x <= 2pi. Give the exact values of the critical numbers and extrema. Find the absolute (or global) maximum and minimum values of the function.

The Attempt at a Solution



So i need to find the critical numbers first right? Take the derivative..
f'(x) = 1/2 - sin(x)
set equal to zero..
0 = 1/2 - sin(x) -> 1/2 = sin(x) how do i find x?
 
Physics news on Phys.org
arcsin(1/2) = x = pi/6
 
Last edited:
critical numbers: pi/6, 5pi/6
I drew out this table:
Interval | Test Value | Sign | Behavior
(0, pi/6) | pi/10 | + | Inc
(pi/6, 5pi/6)| pi/2 | - | Dec
(5pi/6, 2pi) | pi | + | Inc

f(pi/6) = pi/12 + cos pi/6 = pi/12 + 6sqrt(3)/12 = pi + 6sqrt(3) / 12
f(5pi/6)= 5pi/12 + [cos 5pi/6 = ?]

how do i find an exact value for these two?
 
The exact value is right as you write it but

cos(pi/6) = sqrt(3)/2
and
cos(5pi/6) = -sqrt(3)/2.

so

f(pi/6) = sqrt(3)/2 + pi/12
f(5pi/6) = 5pi/12 - sqrt(3)/2
 
so,

pi/12 + sqrt(3)/2 is a local max and
5pi/12 - sqrt(3)/2 is a local min?

f(0) = 1 is a global min and
f(2pi) = pi + 1 is a global max?
 
When you drew the table, what does it tell you?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top