MHB Cube Root Challenge: Prove Inequality

AI Thread Summary
The discussion centers on proving the inequality $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}$. Participants agree that the proof is straightforward, with one user mentioning the use of the arithmetic mean-geometric mean inequality (AM-GM) to establish that $x>\dfrac{31}{9}$. The conversation emphasizes the necessity of the proof, indicating a shared understanding of its importance. Overall, the participants are engaged in mathematical reasoning to validate the inequality. The discussion highlights both the simplicity and significance of the proof in the context of cube roots.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}$
 
Mathematics news on Phys.org
anemone said:
Prove $\sqrt[3]{43}<\sqrt[3]{9}+\sqrt[3]{3}<\sqrt[3]{44}----(1)$
my solution :
if (1) is true then cube and rearrange it we get :
$31<9(\sqrt[3]{9}+\sqrt[3]{3})<32$
or $31<9(x^2+x)<32$
or $31<9x(x+1)<32---(2)$
here we let $x=\sqrt[3]{3}>1$
if $1.44<x=\sqrt[3]{3}<1.45 $ then both sides of (2)will be satisfied
checking wih calculator $\sqrt[3]{3}\approx 1.44225$
in fact we can apply $AP>GP$ to both sides of (2) and get the same result
 
Last edited:
Thanks Albert for participating...

I think you have to explicitly prove that $1.44<x=\sqrt[3]{3}<1.45 $ is true to complete your proof...:)
 
anemone said:
Thanks Albert for participating...

I think you have to explicitly prove that $1.44<x=\sqrt[3]{3}<1.45 $ is true to complete your proof...:)
it is easy :
$1.44^3=2.985984<3<1.45^3=3.048625$
[TABLE="width: 54"]
[TR]
[TD="width: 72, bgcolor: transparent, align: right"][/TD]
[/TR]
[TR]
[TD="bgcolor: transparent, align: right"][/TD]
[/TR]
[/TABLE]
 
Last edited by a moderator:
Albert said:
it is easy :
$1.44^3=2.985984<3<1.45^3=3.048625$

Yes, it's easy and it's necessary. :D

My solution:

Let $x= \sqrt[3]{9} +\sqrt[3]{3}$, cube the inequality and rearrange, we have to prove $\dfrac{31}{9}\lt x \lt \dfrac{32}{9}$, but note that

$9(20^3)=72000\gt 41^3=68921$, this gives $\sqrt[3]{9} \gt \dfrac{41}{20}$ and

$3(25^3)=46875\gt 36^3=46656$, this gives $\sqrt[3]{3} \gt \dfrac{36}{25}$, so $x>\dfrac{41}{20}+\dfrac{36}{25}=3\dfrac{49}{100}>\dfrac{31}{9}$

Also,

$9(10^3)=9000< 21^3=9261$, this gives $\sqrt[3]{9} < \dfrac{21}{10}$ and

$3(20^3)=24000< 29^3=24389$, this gives $\sqrt[3]{3}<\dfrac{29}{20}$, so $x<\dfrac{21}{20}+\dfrac{29}{20}=2\dfrac{1}{2}<\dfrac{32}{9}$

so we're done.
 
anemone said:
Yes, it's easy and it's necessary. :D

My solution:

Let $x= \sqrt[3]{9} +\sqrt[3]{3}$, cube the inequality and rearrange, we have to prove $\dfrac{31}{9}\lt x \lt \dfrac{32}{9}$, but note that

$9(20^3)=72000\gt 41^3=68921$, this gives $\sqrt[3]{9} \gt \dfrac{41}{20}$ and

$3(25^3)=46875\gt 36^3=46656$, this gives $\sqrt[3]{3} \gt \dfrac{36}{25}$, so $x>\dfrac{41}{20}+\dfrac{36}{25}=3\dfrac{49}{100}>\dfrac{31}{9}$

Also,

$9(10^3)=9000< 21^3=9261$, this gives $\sqrt[3]{9} < \dfrac{21}{10}$ and

$3(20^3)=24000< 29^3=24389$, this gives $\sqrt[3]{3}<\dfrac{29}{20}$, so $x<\dfrac{21}{20}+\dfrac{29}{20}=2\dfrac{1}{2}<\dfrac{32}{9}$

so we're done.
I will use $AP>GP$ to prove $x>\dfrac{31}{9}$
let :$x= \sqrt[3]{9} +\sqrt[3]{3}$
$x>2\sqrt 3>\dfrac {31}{9}$
for $\sqrt 3>1.73>\dfrac{31}{18}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
9
Views
11K
Replies
2
Views
1K
Replies
6
Views
2K
Replies
7
Views
2K
Back
Top