Cubic polynomial function with 3 real roots; one at infinity?

AI Thread Summary
A cubic polynomial cannot have a real root at infinity, as infinity is not part of the real number domain. The behavior of cubic polynomials shows that as x approaches positive or negative infinity, the function will also approach positive or negative infinity, respectively. Therefore, it is impossible for a cubic polynomial to have three real roots with one being at infinity. This conclusion applies to all odd-degree polynomials, while even-degree polynomials approach infinity at both ends. The discussion emphasizes the fundamental properties of polynomial functions in relation to their limits.
hiroman
Messages
6
Reaction score
0
Is it possible to have a cubic polynomial (ax^3+bx^2+cx+d) which has three REAL roots, with one of them being +/- infinity?

If there is, can you give an example?

Thanks!
 
Mathematics news on Phys.org
hiroman said:
Is it possible to have a cubic polynomial (ax^3+bx^2+cx+d) which has three REAL roots, with one of them being +/- infinity?

If there is, can you give an example?

Thanks!

It doesn't make literal sense for any function whose domain is the real numbers to have a root at infinity, since infinity's not an element of the domain.

But we could still ask if there's a 3rd degree polynomial such that the limit as x->inf is 0. The answer's no, and it's easy to see. As x -> +inf, x^3 goes to +inf. Since the x^3 term eventually dominates the rest of the terms, the polynomial goes to +inf.

Likewise, as x -> -inf, the function must go to -inf. So it's not possible for the polynomial to go to zero at +/- infinity. This reasoning goes through for any odd-degree polynomial. For even-degree polynomials, the limits at +/- infinity are both infinity.
 
Many thanks for the enlightenment, Steve! Cheers.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top