Cubic polynomial function with 3 real roots; one at infinity?

hiroman
Messages
6
Reaction score
0
Is it possible to have a cubic polynomial (ax^3+bx^2+cx+d) which has three REAL roots, with one of them being +/- infinity?

If there is, can you give an example?

Thanks!
 
Mathematics news on Phys.org
hiroman said:
Is it possible to have a cubic polynomial (ax^3+bx^2+cx+d) which has three REAL roots, with one of them being +/- infinity?

If there is, can you give an example?

Thanks!

It doesn't make literal sense for any function whose domain is the real numbers to have a root at infinity, since infinity's not an element of the domain.

But we could still ask if there's a 3rd degree polynomial such that the limit as x->inf is 0. The answer's no, and it's easy to see. As x -> +inf, x^3 goes to +inf. Since the x^3 term eventually dominates the rest of the terms, the polynomial goes to +inf.

Likewise, as x -> -inf, the function must go to -inf. So it's not possible for the polynomial to go to zero at +/- infinity. This reasoning goes through for any odd-degree polynomial. For even-degree polynomials, the limits at +/- infinity are both infinity.
 
Many thanks for the enlightenment, Steve! Cheers.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top