Current Density: Research by Mechanical Engineering Student

AI Thread Summary
A mechanical engineering student is researching electrical current flow through materials, focusing on how current density behaves around geometrical features like 90-degree bends. They believe that current flows through paths of least resistance, similar to heat flow, and have conducted FEA simulations supporting this idea. However, they seek an analytical solution to validate their findings, particularly regarding non-linear current density distribution. They reference a paper suggesting that maximum current density is inversely proportional to the cube root of the inside corner radius but are looking for additional models to calculate current distribution. The discussion highlights the challenges of finding a simple analytical solution due to the complexity of the geometry involved.
spdale
Messages
2
Reaction score
0
Hi

I am a research student looking at electrical current flow through various materials although my undergraduate degree was in mechanical engineering so electrical stuff isn't my strong point.

I believe that current flow will flow through the path that offers the least resistance, and is analogous to heat flow, in other words, if you imagine a flat conductive material like the letter 'L' then the highest current density would be around the inside corner.

FEA simulations I have conducted show this, but I need to find an analytical solution to validate the results. Are there standard models to determine electrical current density in this manner? i.e. something that proves non-linear current density/distribution in the scenario described?

Any help appreciated!
 
Engineering news on Phys.org
Which forms of Ohm's Law are you using, this one?

\vec{J} = \sigma (del) E

Since Ohm's Law is a constitutive equation and your geometry is not continuous, I do not believe you will be able to find a simple analytical solution. I could be wrong, but I just can't think of a way you could analytically solve for such geometry.
 
Yes that variation of ohm's law seems the most appropriate, but I am quit stumped about how to validate my results. Common sense would indeed say that my FEA results are correct as you have these current 'hotspots' around the 90 degree bend in my example, however I appreciate it may not be easy to prove analytically without resorting to numerical finite element methods (which I don't want to do).

I have found one paper, regarding 90 degree bends in thin strip conductors, which states that the maximum current density is inversely proportional to the cube root of the inside corner radius so this may yield some analytical results. I was just wondering if there were any other solutions out there; ideally rather than just calculating a maximum I would like to calculate a distribution of current emanating from the maximum point. This solution I have seems quite abstract to be basing my FEA work on.

Thank you for reading and taking the time to respond!
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...

Similar threads

Replies
24
Views
2K
Replies
2
Views
3K
Replies
7
Views
2K
Replies
7
Views
2K
Replies
9
Views
3K
Replies
1
Views
2K
Back
Top