Current Density: Research by Mechanical Engineering Student

AI Thread Summary
A mechanical engineering student is researching electrical current flow through materials, focusing on how current density behaves around geometrical features like 90-degree bends. They believe that current flows through paths of least resistance, similar to heat flow, and have conducted FEA simulations supporting this idea. However, they seek an analytical solution to validate their findings, particularly regarding non-linear current density distribution. They reference a paper suggesting that maximum current density is inversely proportional to the cube root of the inside corner radius but are looking for additional models to calculate current distribution. The discussion highlights the challenges of finding a simple analytical solution due to the complexity of the geometry involved.
spdale
Messages
2
Reaction score
0
Hi

I am a research student looking at electrical current flow through various materials although my undergraduate degree was in mechanical engineering so electrical stuff isn't my strong point.

I believe that current flow will flow through the path that offers the least resistance, and is analogous to heat flow, in other words, if you imagine a flat conductive material like the letter 'L' then the highest current density would be around the inside corner.

FEA simulations I have conducted show this, but I need to find an analytical solution to validate the results. Are there standard models to determine electrical current density in this manner? i.e. something that proves non-linear current density/distribution in the scenario described?

Any help appreciated!
 
Engineering news on Phys.org
Which forms of Ohm's Law are you using, this one?

\vec{J} = \sigma (del) E

Since Ohm's Law is a constitutive equation and your geometry is not continuous, I do not believe you will be able to find a simple analytical solution. I could be wrong, but I just can't think of a way you could analytically solve for such geometry.
 
Yes that variation of ohm's law seems the most appropriate, but I am quit stumped about how to validate my results. Common sense would indeed say that my FEA results are correct as you have these current 'hotspots' around the 90 degree bend in my example, however I appreciate it may not be easy to prove analytically without resorting to numerical finite element methods (which I don't want to do).

I have found one paper, regarding 90 degree bends in thin strip conductors, which states that the maximum current density is inversely proportional to the cube root of the inside corner radius so this may yield some analytical results. I was just wondering if there were any other solutions out there; ideally rather than just calculating a maximum I would like to calculate a distribution of current emanating from the maximum point. This solution I have seems quite abstract to be basing my FEA work on.

Thank you for reading and taking the time to respond!
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...

Similar threads

Replies
24
Views
2K
Replies
2
Views
3K
Replies
7
Views
2K
Replies
7
Views
2K
Replies
9
Views
3K
Replies
1
Views
2K
Back
Top