Current Density: Research by Mechanical Engineering Student

AI Thread Summary
A mechanical engineering student is researching electrical current flow through materials, focusing on how current density behaves around geometrical features like 90-degree bends. They believe that current flows through paths of least resistance, similar to heat flow, and have conducted FEA simulations supporting this idea. However, they seek an analytical solution to validate their findings, particularly regarding non-linear current density distribution. They reference a paper suggesting that maximum current density is inversely proportional to the cube root of the inside corner radius but are looking for additional models to calculate current distribution. The discussion highlights the challenges of finding a simple analytical solution due to the complexity of the geometry involved.
spdale
Messages
2
Reaction score
0
Hi

I am a research student looking at electrical current flow through various materials although my undergraduate degree was in mechanical engineering so electrical stuff isn't my strong point.

I believe that current flow will flow through the path that offers the least resistance, and is analogous to heat flow, in other words, if you imagine a flat conductive material like the letter 'L' then the highest current density would be around the inside corner.

FEA simulations I have conducted show this, but I need to find an analytical solution to validate the results. Are there standard models to determine electrical current density in this manner? i.e. something that proves non-linear current density/distribution in the scenario described?

Any help appreciated!
 
Engineering news on Phys.org
Which forms of Ohm's Law are you using, this one?

\vec{J} = \sigma (del) E

Since Ohm's Law is a constitutive equation and your geometry is not continuous, I do not believe you will be able to find a simple analytical solution. I could be wrong, but I just can't think of a way you could analytically solve for such geometry.
 
Yes that variation of ohm's law seems the most appropriate, but I am quit stumped about how to validate my results. Common sense would indeed say that my FEA results are correct as you have these current 'hotspots' around the 90 degree bend in my example, however I appreciate it may not be easy to prove analytically without resorting to numerical finite element methods (which I don't want to do).

I have found one paper, regarding 90 degree bends in thin strip conductors, which states that the maximum current density is inversely proportional to the cube root of the inside corner radius so this may yield some analytical results. I was just wondering if there were any other solutions out there; ideally rather than just calculating a maximum I would like to calculate a distribution of current emanating from the maximum point. This solution I have seems quite abstract to be basing my FEA work on.

Thank you for reading and taking the time to respond!
 
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...

Similar threads

Replies
24
Views
2K
Replies
2
Views
3K
Replies
7
Views
2K
Replies
7
Views
2K
Replies
9
Views
3K
Replies
1
Views
2K
Back
Top