Curvature using exterior differential forms

emma83
Messages
31
Reaction score
0
Hello,

I have a question related to the calculation of curvature using exterior differential forms (Misner, pp. 354-363). In all the examples given in the book (i.e. Friedmann, Schwarzschild, pulsating star metrics), the "guess and check" method used to find the connection forms (Eq. (14.31)) work well because the metric has only diagonal terms g_{nn}, so an orthonormal basis such as the one given in Eq. (1) in Box 14.5 (p. 355) can be derived in a straightforward manner from the components of the metric.

Now is there any chance to apply this method when there are also off-diagonal terms (g_{mn}, m \neq n), or is one then compelled to use the systematic way (Eq. (14.32) and (14.33)) ?

Thanks a lot for your help!
 
Physics news on Phys.org
emma83 said:
Hello,

I have a question related to the calculation of curvature using exterior differential forms (Misner, pp. 354-363). In all the examples given in the book (i.e. Friedmann, Schwarzschild, pulsating star metrics), the "guess and check" method used to find the connection forms (Eq. (14.31)) work well because the metric has only diagonal terms g_{nn}, so an orthonormal basis such as the one given in Eq. (1) in Box 14.5 (p. 355) can be derived in a straightforward manner from the components of the metric.

Now is there any chance to apply this method when there are also off-diagonal terms (g_{mn}, m \neq n), or is one then compelled to use the systematic way (Eq. (14.32) and (14.33)) ?

Thanks a lot for your help!

I don't know if this will help you, or not, but I used the exterior calculus to calculate the Ricci tensor, and thus the source free Einstein's equations in my Ph.D. thesis a long time ago. Charles Misner published an article in 1962 in the Journal of Math Physics in the appendix of which he gave a very nice description of the procedure. I always thought his version there was more clear than the procedure given in MTW. I will look in my attic and see if I can find my copy of the article and post the exact reference.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Replies
35
Views
28K
Back
Top