fmadero
- 19
- 0
Homework Statement
Solve for x
\left( \frac{x+1}{x} \right)^x \left( ln \left(\frac{x}{x+1} \right)+\frac{1}{x+1}\right)=0
Homework Equations
Is the solution correct?
The Attempt at a Solution
\frac{ \left( \frac{x+1}{x} \right)^x } {\left( \frac{x+1}{x} \right)^x} \left( ln \left(\frac{x}{x+1} \right)+\frac{1}{x+1}\right)=\frac{0}{\left( \frac{x+1}{x} \right)^x}
ln \left(\frac{x}{x+1} \right)+\frac{1}{x+1}\right)=0
ln\left(x\right)-ln\left(x+1\right)+\left(x+1\right)^{-1}=0
e^{ln\left(x\right)}-e^{ln\left(x+1\right)}+e^{\left(x+1\right)^{-1}}=e^{0}
x-(x+1)+e^{\left(x+1\right)^{-1}}=1
x-x-1+e^{\left(x+1\right)^{-1}}=1
e^{\left(x+1\right)^{-1}}=1+1
ln\left(e^{\left(x+1\right)^{-1}}\right)=ln\left(2\right)
\left(x+1\right)^{-1}=ln\left(2\right)
\frac{1}{x+1}=ln\left(2\right)
1=\left(x+1\right)ln\left(2\right)
\frac{1}{ln\left(2\right)}=x+1
x=\frac{1}{ln\left(2\right)}-1