D.E. Cauchy-Euler Method: Have I made any mistakes

  • Thread starter Thread starter Jeff12341234
  • Start date Start date
  • Tags Tags
    Method
Jeff12341234
Messages
179
Reaction score
0
This problem seems suspiciously simple. Have I made any mistakes?

yg7KedC.jpg
 
Physics news on Phys.org
Presumably, you checked your work. Since there are no initial conditions, it is not possible to solve for the constants.

BTW, please shrink your posted images a little, to no more than 900 x 600 pixels.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top