D'Alembert operator is commute covariant derivative?

dhalilsim
Messages
3
Reaction score
0
For example:

D_α D_β D^β F_ab= D_β D^β D_α F_ab <br /> <br /> is true or not? Are there any books sources?
 
Physics news on Phys.org
So you are asking whether ##\nabla_\mu\Box F_{ab} = \Box \nabla_\mu F_{ab}##?
Here I wrote ##\Box = g^{\mu\nu}\nabla_\mu\nabla_\nu## following modern notation.

Have you tried finding the commutator? What is ##[ \nabla_\mu, \nabla_\nu]## equal too?

The (free) lecture notes by Carroll might have what you are looking for. At the least they introduce all you need to calculate the commutator. (I know the book that built on those does have the identities you need)
 
  • Like
Likes dhalilsim and bcrowell
JorisL said:
So you are asking whether ##\nabla_\mu\Box F_{ab} = \Box \nabla_\mu F_{ab}##?
Here I wrote ##\Box = g^{\mu\nu}\nabla_\mu\nabla_\nu## following modern notation.

Have you tried finding the commutator? What is ##[ \nabla_\mu, \nabla_\nu]## equal too?

The (free) lecture notes by Carroll might have what you are looking for. At the least they introduce all you need to calculate the commutator. (I know the book that built on those does have the identities you need)
Very thanks to your reply.
Yes my question is whether or not
##∇_μ∇_ν∇^νF_{ab}=∇_ν∇^ν∇_μF_{ab}## where ##F_{ab}## is electromagnetic field tensor.
Can I simply think,
so d'Alembert operator ##∇_ν∇^ν## is invariant,
then Can I immediately write ##[∇_μ,\Box]=0##??
 
The easiest way to do this is the following ##[\nabla_\mu, \Box] = [\nabla_\mu,g^{\alpha\beta}\nabla_\alpha\nabla_\beta] = \ldots##
Now I'll try to guide you through this by asking you some other questions.

##\nabla_\mu g^{\alpha\beta}## is equal to ... (does metric compatibility ring a bell?)
If you use this you can write the first equation as ##g^{\alpha\beta}[\nabla_\mu,\nabla_\alpha\nabla_\beta]##.

Now we need to know how we can write a commutator of the form ##[A,BC]## in terms of ##[A,B]## and ##[A,C]##.
The easiest way to do this is expanding the total commutator and looking for the other commutators. It's a standard property that can be found in a lot of places.

Finally look up what ##[\nabla_\mu,\nabla_\nu]## is equal to. This can be found in every text on GR, here is a free link http://preposterousuniverse.com/grnotes/grnotes-three.pdf
 
Last edited by a moderator:
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top