Decomposing a Matrix into Jordan Normal Form

  • Thread starter Thread starter PirateFan308
  • Start date Start date
  • Tags Tags
    Matrix
PirateFan308
Messages
91
Reaction score
0

Homework Statement


Let A = \begin{pmatrix}4 & 1 & 0\\0 & 3 & 1\\-1 & -1 & 2\end{pmatrix}, which has characteristic polynomial (3-x)^{3}. Find a matrix X such that:

X^{-1}AX = \begin{pmatrix}3 & 1 & 0\\0 & 3 & 1\\0 & 0 & 3\end{pmatrix}



The Attempt at a Solution


If X^{-1}AX = \begin{pmatrix}3 & 1 & 0\\0 & 3 & 1\\0 & 0 & 3\end{pmatrix} =: B

AX = XB

Suppose that the columns of X are v_{1}, v_{2}, v_{3}
The first column of B has the coordinates of Av_{1}

Av_{1}=3v_{1}+0v_{2}+0v_{3}=3v_{3}~~~~(A-3I)v_{1}=0

v_{1} = \begin{pmatrix}a\\d\\g\end{pmatrix}

(A-3I) = \begin{pmatrix}1 & 1 & 0\\0 & 0 & 1\\-1 & -1 & -1\end{pmatrix} → \begin{pmatrix}1 & 1 & 0\\0 & 0 & 1\\0 & 0 & -1\end{pmatrix} → \begin{pmatrix}1 & 1 & 0\\0 & 0 & 1\\0 & 0 & 0\end{pmatrix}

let d=1, a=-1, g=0

v_{1} = \begin{pmatrix}-1\\1\\0\end{pmatrix}

Av_{2} = 1v_{1}+3v_{2}+0v_{3} = v_{1} + 3v_{2}

(A-3I)v_{2} = v_{1}

v_{2} = \begin{pmatrix}b\\e\\h\end{pmatrix}

\begin{pmatrix}1 & 1 & 0\\0 & 0 & 1\\-1 & -1 & -1\end{pmatrix} \begin{pmatrix}b\\e\\h\end{pmatrix} = \begin{pmatrix}-1\\1\\0\end{pmatrix}

\begin{pmatrix}1 & 1 & 0 & | ~~-1\\0 & 0 & 1 & |~~ 1\\-1 & -1 & -1 & |~~ 0\end{pmatrix} → \begin{pmatrix}1 & 1 & 0 & | ~~-1\\0 & 0 & 1 & | ~~1\\0 & 0 & -1 & | ~~-1\end{pmatrix} → \begin{pmatrix}1 & 1 & 0 & | ~~-1\\0 & 0 & 1 & |~~ 1\\0 & 0 & 0 & |~~ 0\end{pmatrix}

v_{2} = \begin{pmatrix}0\\-1\\0\end{pmatrix}



Av_{3} = 0v_{1}+1v_{2}+3v_{3} = v_{2} + 3v_{3}

(A-3I)v_{3} = v_{2}

v_{3} = \begin{pmatrix}c\\f\\i\end{pmatrix}

\begin{pmatrix}1 & 1 & 0\\0 & 0 & 1\\-1 & -1 & -1\end{pmatrix} \begin{pmatrix}c\\f\\i\end{pmatrix} = \begin{pmatrix}0\\-1\\0\end{pmatrix}

\begin{pmatrix}1 & 1 & 0 & | ~~0\\0 & 0 & 1 & | ~~-1\\-1 & -1 & -1 & |~~ 0\end{pmatrix} → \begin{pmatrix}1 & 1 & 0 & |~~ 0\\0 & 0 & 1 & | ~~-1\\0 & 0 & -1 & |~~ \end{pmatrix} → \begin{pmatrix}1 & 1 & 0 & |~~ 0\\0 & 0 & 1 & | ~~-1\\0 & 0 & 0 & | ~~-1\end{pmatrix}

Therefore, there does not exist an invertible matrix X because the last matrix can not be solved to get v_{3} so that X can be created.

I don't think this is right as my teacher generally doesn't give us 'unsolvable' questions. I'm not sure what I've done wrong, and I've tried it a few different ways and I can never get it to work. Thanks!
 
Physics news on Phys.org
I've only just finished my linear algebra course. This looks like you're being given the Jordan Normal form of the matrix, and asked to find the decomposition. Every square matrix has a Jordan decomposition.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top