Willowz said:
What's bothersome *to me* about the 0 < to is is that it seems redundant and even confusing. First of all it's known taht δ is greater than 0. Second, there is an absolute value there. Anyone seeing this or I'm not seeing it's purpose in the definition.
It might be bothersome but it's pretty important (if you want to be correct).
The fact that δ is greater than zero has nothing to do with it, nor does the fact that there's an absolute value there.
if I write "for every x that holds |x-p|<δ", since 0<δ (you said it!), one of these x's is x=p! (like people mentioned above).
So that means, that specifically for x=p, this should also hold: (f(p) - L) < ...
But f(p), like mentioned, doesn't have to exist!
For example, take the function f(x) = x for every x exept x=0. f(x) is not defined on x=0. (there's a hole there). The function has of course a limit on x=0 (L=0), but it's not defined there!
If we'd only write |x-p|<δ, and not also |x-p|>0 the function in the example would have no limit in 0 (because for every δ, there exists an x: x=p, so that |x-p|=|p-p|=0<δ, and yet |f(x)-L| < \epsilon doesn't hold, cause f(p) doesn't exist!) - and that's not what we want, intuitively.
\epsilon
Alternatively you could instead of writing |x-p|>0 say verbally: "for any x\neqp that holds |x-p|<δ"...